Skip to main content

Biodegradable Polymers for Cardiac Tissue Engineering

  • Reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

Biodegradation is a process of degradation and deterioration of material due to exposure to microorganisms aerobic and anaerobic processes. Biodegradable polymers have been used widely in tissue engineering, and their application varies from bone tissue, epithelium, vascular, and cardiac tissue. This is important to treat patients by mimicking cardiac tissue’s extracellular matrix structure, which helps it regenerate the new cell and degrade after some time. Some polymers are biocompatible, are nontoxic, and have good mechanical integrity and thermal plasticity but longer degradable periods. This chapter will highlight the various types of polymers used in the cardiac tissue scaffolds, biodegradable properties of the polymers, and cost-effective synthesis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMSF:

Acid-modified silk fibroin

BDP:

Biodegradable polymer

BMSC:

Bone marrow mesenchymal stem cell

CVD:

Cardiovascular disease

ECM:

Extracellular matrix

F6P:

Fructose-6-phosphate

FDM :

Fused deposition modeling

HA:

Hyaluronic acid

hiPSC-CM :

Human-induced pluripotent stem cell-derived cardiomyocyte

hPSC:

Human pluripotent stem cell

LV:

Left ventricular

MI:

Myocardial infarction

MTE :

Myocardial tissue engineering

SF:

Silk fibroin

TE:

Tissue engineering

Tg:

Glass transition temperature

Tm:

Melting temperature

References

  1. Toong DW, Toh HW, Ng JC, Wong PE, Leo HL, Venkatraman S, Tan LP, Ang HY, and Huang Y (2020) Bioresorbable Polymeric Scaffold in Cardiovascular Applications. International Journal of Molecular Sciences 21(10)

    Google Scholar 

  2. Maraveas C (2020) Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers 12(5)

    Google Scholar 

  3. Laycock B, Nikolić M, Colwell JM, Gauthier E, Halley P, Bottle S, and George G (2017) Lifetime prediction of biodegradable polymers. Progress in Polymer Science 71:144–189

    Article  CAS  Google Scholar 

  4. Kabir E, Kaur R, Lee J, Kim K-H, and Kwon EE (2020) Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. Journal of Cleaner Production 258:120536

    Article  CAS  Google Scholar 

  5. Chandra R and Rustgi R (1998) Biodegradable Polymers. Progress in Polymer Science 23(1):1273–1335

    Article  CAS  Google Scholar 

  6. Alshehrei F (2017) Biodegradation of Synthetic and Natural Plastic by Microorganisms. Journal of Applied & Environmental Microbiology 5(1):8-19

    CAS  Google Scholar 

  7. Song JH, Murphy RJ, Narayan R, and Davies GBH (2009) Biodegradable and Compostable Alternatives to Conventional Plastics. Philosophical Transactions: Biological Sciences 364(1526):2127–2139

    Article  CAS  Google Scholar 

  8. Veeman D, Sai MS, Sureshkumar P, Jagadeesha T, Natrayan L, Ravichandran M, and Mammo WD (2021) Additive Manufacturing of Biopolymers for Tissue Engineering and Regenerative Medicine: An Overview, Potential Applications, Advancements, and Trends. International Journal of Polymer Science 2021:4907027

    Article  Google Scholar 

  9. (!!! INVALID CITATION !!! 9-12)

    Google Scholar 

  10. Chen Q-Z, Harding SE, Ali NN, Lyon AR, and Boccaccini AR (2008) Biomaterials in cardiac tissue engineering: Ten years of research survey. Materials Science and Engineering: R: Reports 59(1):1–37

    Article  Google Scholar 

  11. Tallawi M, Rosellini E, Barbani N, Cascone MG, Rai R, Saint-Pierre G, and Boccaccini AR (2015) Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. Journal of The Royal Society Interface 12(108):20150254

    Article  Google Scholar 

  12. Domenech M, Polo-Corrales L, Ramirez-Vick JE, and Freytes DO (2016) Tissue Engineering Strategies for Myocardial Regeneration: Acellular Versus Cellular Scaffolds? Tissue engineering. Part B, Reviews 22(6):438–458

    CAS  Google Scholar 

  13. Katari R, Peloso A, and Orlando G Tissue engineering and regenerative medicine: semantic considerations for an evolving paradigm. Frontiers in bioengineering and biotechnology, 2014. 2, 57 https://doi.org/10.3389/fbioe.2014.00057.

    Article  Google Scholar 

  14. Stoppel WL, Hu D, Domian IJ, Kaplan DL, and Black LD (2015) Anisotropic silk biomaterials containing cardiac extracellular matrix for cardiac tissue engineering. Biomedical materials 10(3):034105

    Article  Google Scholar 

  15. Cui Z, Yang B, and Li R-K (2016) Application of Biomaterials in Cardiac Repair and Regeneration. Engineering 2(1):141–148

    Article  CAS  Google Scholar 

  16. Dattola E, Parrotta EI, Scalise S, Perozziello G, Limongi T, Candeloro P, Coluccio ML, Maletta C, Bruno L, De Angelis MT, Santamaria G, Mollace V, Lamanna E, Di Fabrizio E, and Cuda G (2019) Development of 3D PVA scaffolds for cardiac tissue engineering and cell screening applications. RSC Advances 9(8):4246–4257

    Article  CAS  Google Scholar 

  17. Kargozar S, Hamzehlou S, and Baino F (2017) Potential of Bioactive Glasses for Cardiac and Pulmonary Tissue Engineering. Materials 10(12)

    Google Scholar 

  18. Ivanoska-Dacikj A, Bogoeva-Gaceva G, Krumme A, Tarasova E, Scalera C, Stojkovski V, Gjorgoski I, and Ristoski T (2020) Biodegradable polyurethane/graphene oxide scaffolds for soft tissue engineering: in vivo behavior assessment. International Journal of Polymeric Materials and Polymeric Biomaterials 69(17):1101–1111

    Article  CAS  Google Scholar 

  19. Merle B, Kraus X, Tallawi M, Scharfe B, El Fray M, Aifantis KE, Boccaccini AR, and Göken M (2018) Dynamic mechanical characterization of poly(glycerol sebacate)/poly(butylene succinate-butylene dilinoleate) blends for cardiac tissue engineering by flat punch nanoindentation. Materials Letters 221:115–118

    Article  CAS  Google Scholar 

  20. Sodian R, Loebe M, Hein A, Martin D, Hoerstrup S, Potapov E, Hausmann H, Lueth T, and Hetzer R (2002) Application of Stereolithography for Scaffold Fabrication for Tissue Engineered Heart Valves. ASAIO journal (American Society for Artificial Internal Organs : 1992) 48:12–6

    Google Scholar 

  21. Mohammadi Nasr S, Rabiee N, Hajebi S, Ahmadi S, Fatahi Y, Hosseini M, Bagherzadeh M, Ghadiri AM, Rabiee M, Jajarmi V, and Webster TJ (2020) Biodegradable Nanopolymers in Cardiac Tissue Engineering: From Concept Towards Nanomedicine. Int J Nanomedicine 15:4205-4224

    Article  Google Scholar 

  22. Zhang F and King MW (2020) Biodegradable Polymers as the Pivotal Player in the Design of Tissue Engineering Scaffolds. Advanced Healthcare Materials 9(13):1901358

    Article  CAS  Google Scholar 

  23. Preston M and Sherman LS Neural stem cell niches: roles for the hyaluronan-based extracellular matrix. Frontiers in bioscience (Scholar edition), 2011. 3, 1165-1179 https://doi.org/10.2741/218.

  24. Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, and Mozafari M (2021) Electrospinning for tissue engineering applications. Progress in Materials Science 117:100721

    Article  CAS  Google Scholar 

  25. Newsom JP, Payne KA, and Krebs MD (2019) Microgels: Modular, tunable constructs for tissue regeneration. Acta Biomaterialia 88:32-41

    Article  CAS  Google Scholar 

  26. Asadpour S, Yeganeh H, Ai J, Kargozar S, Rashtbar M, Seifalian A, and Ghanbari H (2018) Polyurethane-Polycaprolactone Blend Patches: Scaffold Characterization and Cardiomyoblast Adhesion, Proliferation, and Function. ACS Biomaterials Science & Engineering 4(12):4299–4310

    Article  CAS  Google Scholar 

  27. Theus AS, Tomov ML, Cetnar A, Lima B, Nish J, McCoy K, Mahmoudi M, and Serpooshan V (2019) Biomaterial approaches for cardiovascular tissue engineering. Emergent Materials 2(2):193–207

    Article  CAS  Google Scholar 

  28. Puppi D and Chiellini F (2020) Biodegradable Polymers for Biomedical Additive Manufacturing. Applied Materials Today 20:100700

    Article  Google Scholar 

  29. Reis LA, Chiu LLY, Feric N, Fu L, and Radisic M (2016) Biomaterials in myocardial tissue engineering. Journal of Tissue Engineering and Regenerative Medicine 10(1):11–28

    Article  CAS  Google Scholar 

  30. Li Y, Meng H, Liu Y, and Lee BP (2015) Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. TheScientificWorldJournal 2015:685690–685690

    Article  Google Scholar 

  31. Kitsara M, Agbulut O, Kontziampasis D, Chen Y, and Menasché P (2017) Fibers for hearts: A critical review on electrospinning for cardiac tissue engineering. Acta Biomaterialia 48:20–40

    Article  CAS  Google Scholar 

  32. Boni R, Ali A, Shavandi A, and Clarkson AN (2018) Current and novel polymeric biomaterials for neural tissue engineering. Journal of Biomedical Science 25(1):90

    Article  CAS  Google Scholar 

  33. Biswal T (2021) Biopolymers for tissue engineering applications: A review. Materials Today: Proceedings 41:397–402

    CAS  Google Scholar 

  34. Sensharma P, Madhumathi G, Jayant RD, and Jaiswal AK (2017) Biomaterials and cells for neural tissue engineering: Current choices. Materials Science and Engineering: C 77:1302–1315

    Article  CAS  Google Scholar 

  35. Bello AB, Kim D, Kim D, Park H, and Lee S-H (2020) Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications. Tissue Engineering Part B: Reviews 26(2):164–180

    Article  CAS  Google Scholar 

  36. Khaing ZZ, Milman BD, Vanscoy JE, Seidlits SK, Grill RJ, and Schmidt CE (2011) High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. Journal of Neural Engineering 8(4):046033

    Article  Google Scholar 

  37. Arulmoli J, Wright HJ, Phan DTT, Sheth U, Que RA, Botten GA, Keating M, Botvinick EL, Pathak MM, Zarembinski TI, Yanni DS, Razorenova OV, Hughes CCW, and Flanagan LA (2016) Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomaterialia 43:122–138

    Article  CAS  Google Scholar 

  38. Sampath U, Ching YC, Chuah CH, Sabariah JJ, and Lin PC (2016) Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites. Materials (Basel) 9(12)

    Google Scholar 

  39. Naziya, Adil M, Kasturi R, Govindarajan G, and Srinivasan.S (2020) Scaffolds In Tissue Engineering. Annals of the Romanian Society for Cell Biology 24:142–152

    Google Scholar 

  40. Abbasian M, Massoumi B, Mohammad-Rezaei R, Samadian H, and Jaymand M (2019) Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering? International Journal of Biological Macromolecules 134:673–694

    Article  CAS  Google Scholar 

  41. Vinod A, Sanjay MR, Suchart S, and Jyotishkumar P (2020) Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production 258:120978

    Article  CAS  Google Scholar 

  42. Ye H, Zhang K, Kai D, Li Z, and Loh XJ (2018) Polyester elastomers for soft tissue engineering. Chemical Society Reviews 47(12):4545–4580

    Article  CAS  Google Scholar 

  43. Asghari F, Samiei M, Adibkia K, Akbarzadeh A, and Davaran S (2017) Biodegradable and biocompatible polymers for tissue engineering application: a review. Artificial Cells, Nanomedicine, and Biotechnology 45(2):185–192

    Article  CAS  Google Scholar 

  44. Vandghanooni S and Eskandani M (2019) Electrically conductive biomaterials based on natural polysaccharides: Challenges and applications in tissue engineering. International Journal of Biological Macromolecules 141:636–662

    Article  CAS  Google Scholar 

  45. Mtibe A, Motloung MP, Bandyopadhyay J, and Ray SS (2021) Synthetic Biopolymers and Their Composites: Advantages and Limitations—An Overview. Macromolecular Rapid Communications 42(15):2100130

    Article  CAS  Google Scholar 

  46. Cortizo MS and Belluzo MS, Biodegradable Polymers for Bone Tissue Engineering, in Industrial Applications of Renewable Biomass Products: Past, Present and Future, SN Goyanes, NB D’Accorso, Editors. 2017, Springer International Publishing: Cham. p. 47–74.

    Chapter  Google Scholar 

  47. Islam MM, Shahruzzaman M, Biswas S, Sakib MN, and Rashid TU (2020) Chitosan based bioactive materials in tissue engineering applications-A review. Bioactive materials 5(1):164–183

    Article  Google Scholar 

  48. Rebelo R, Fernandes M, and Fangueiro R (2017) Biopolymers in Medical Implants: A Brief Review. Procedia Engineering 200:236–243

    Article  CAS  Google Scholar 

  49. Stratton S, Shelke NB, Hoshino K, Rudraiah S, and Kumbar SG (2016) Bioactive polymeric scaffolds for tissue engineering. Bioact Mater 1(2):93–108

    Article  Google Scholar 

  50. Park CH and Woo KM (2018) Fibrin-based biomaterial applications in tissue engineering and regenerative medicine. Biomimetic Medical Materials:253–261

    Google Scholar 

  51. Iqbal N, Khan AS, Asif A, Yar M, Haycock JW, and Rehman IU (2019) Recent concepts in biodegradable polymers for tissue engineering paradigms: a critical review. International Materials Reviews 64(2):91–126

    Article  CAS  Google Scholar 

  52. Wöltje M, Kölbel A, Aibibu D, and Cherif C (2021) A Fast and Reliable Process to Fabricate Regenerated Silk Fibroin Solution from Degummed Silk in 4 Hours. International Journal of Molecular Sciences 22(19)

    Google Scholar 

  53. Meng L, Shao C, Cui C, Xu F, Lei J, and Yang J (2020) Autonomous Self-Healing Silk Fibroin Injectable Hydrogels Formed via Surfactant-Free Hydrophobic Association. ACS Appl Mater Interfaces 12(1):1628–1639

    Article  CAS  Google Scholar 

  54. Reddy MS, Ponnamma D, Choudhary R, and Sadasivuni KK (2021) A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers 13(7)

    Google Scholar 

  55. Lee SJ, Yoo JJ, and Atala A, Biomaterials and Tissue Engineering, in Clinical Regenerative Medicine in Urology, BW Kim, Editor. 2018, Springer Singapore: Singapore. p. 17–51.

    Chapter  Google Scholar 

  56. Ogueri KS, Jafari T, Escobar Ivirico JL, and Laurencin CT (2019) Polymeric Biomaterials for Scaffold-Based Bone Regenerative Engineering. Regenerative Engineering and Translational Medicine 5(2):128–154

    Article  CAS  Google Scholar 

  57. Ghawanmeh AA, Ali GAM, Algarni H, Sarkar SM, and Chong KF (2019) Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Research 12:973–990

    Article  CAS  Google Scholar 

  58. Majid QA, Fricker ATR, Gregory DA, Davidenko N, Hernandez Cruz O, Jabbour RJ, Owen TJ, Basnett P, Lukasiewicz B, Stevens M, Best S, Cameron R, Sinha S, Harding SE, and Roy I (2020) Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Frontiers in Cardiovascular Medicine 7:192

    Article  Google Scholar 

  59. Xue Y, Sant V, Phillippi J, and Sant S (2017) Biodegradable and biomimetic elastomeric scaffolds for tissue-engineered heart valves. Acta Biomaterialia 48:2–19

    Article  CAS  Google Scholar 

  60. Hemshekhar M, Thushara RM, Chandranayaka S, Sherman LS, Kemparaju K, and Girish KS (2016) Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. International Journal of Biological Macromolecules 86:917–928

    Article  CAS  Google Scholar 

  61. Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Rezaei Kolahchi A, Mashayekhan S, and Sanati-Nezhad A (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomaterialia 62:42–63

    Article  CAS  Google Scholar 

  62. Almouemen N, Kelly HM, and O'Leary C Tissue Engineering: Understanding the Role of Biomaterials and Biophysical Forces on Cell Functionality Through Computational and Structural Biotechnology Analytical Methods. Computational and structural biotechnology journal, 2019. 17, 591–598 https://doi.org/10.1016/j.csbj.2019.04.008.

  63. Sanko V, Sahin I, Aydemir Sezer U, and Sezer S (2019) A versatile method for the synthesis of poly(glycolic acid): high solubility and tunable molecular weights. Polymer Journal 51(7):637–647

    Article  CAS  Google Scholar 

  64. Gostev AA, Karpenko AA, and Laktionov PP (2018) Polyurethanes in cardiovascular prosthetics. Polymer Bulletin 75(9):4311-4325

    Article  CAS  Google Scholar 

  65. Rai R, Tallawi M, Grigore A, and Boccaccini AR (2012) Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science 37(8):1051–1078

    Article  CAS  Google Scholar 

  66. Lau CC, Al Qaysi M, Owji N, Bayazit MK, Xie J, Knowles JC, and Tang J (2020) Advanced biocomposites of poly(glycerol sebacate) and β-tricalcium phosphate by in situ microwave synthesis for bioapplication. Materials Today Advances 5:100023

    Article  Google Scholar 

  67. Nair LS and Laurencin CT (2006) Polymers as biomaterials for tissue engineering and controlled drug delivery. Advances in biochemical engineering/biotechnology 102:47–90

    Article  CAS  Google Scholar 

  68. Karimi A and Navidbakhsh M (2014) Mechanical properties of PVA material for tissue engineering applications. Materials Technology 29(2):90–100

    Article  CAS  Google Scholar 

  69. Sanhueza C, Acevedo F, Rocha S, Villegas P, Seeger M, and Navia R (2019) Polyhydroxyalkanoates as biomaterial for electrospun scaffolds. International Journal of Biological Macromolecules 124:102–110

    Article  CAS  Google Scholar 

  70. Williams DF (2019) Challenges With the Development of Biomaterials for Sustainable Tissue Engineering. Frontiers in Bioengineering and Biotechnology 7:127

    Article  Google Scholar 

  71. Kumar A and Han SS (2017) PVA-based hydrogels for tissue engineering: A review. International Journal of Polymeric Materials and Polymeric Biomaterials 66(4):159–182

    Article  CAS  Google Scholar 

  72. Rajan KP, Thomas SP, Gopanna A, and Chavali M (2018) Polyhydroxybutyrate (PHB): a standout biopolymer for environmental sustainability. Handbook of ecomaterials:1–23

    Google Scholar 

  73. Msuya N (2017) Poly(lactic-acid) Production_From Monomer to Polymer: A review. Sci-Fed Journal of Polymerscience 1

    Google Scholar 

  74. Tokiwa Y, Calabia BP, Ugwu CU, and Aiba S (2009) Biodegradability of Plastics. International Journal of Molecular Sciences 10(9)

    Google Scholar 

  75. Zhang W (2021) Analysis on the Development and Application of Biodegradable Polymers. IOP Conference Series: Earth and Environmental Science 647:012156

    Article  Google Scholar 

  76. Chaudhuri R, Ramachandran M, Moharil P, Harumalani M, and Jaiswal AK (2017) Biomaterials and cells for cardiac tissue engineering: Current choices. Materials Science and Engineering: C 79:950–957

    Article  CAS  Google Scholar 

  77. Ong CS, Zhou X, Huang CY, Fukunishi T, Zhang H, and Hibino N (2017) Tissue engineered vascular grafts: current state of the field. Expert Rev Med Devices 14(5):383–392

    Article  CAS  Google Scholar 

  78. Hekmati AH and Norouzi M, 12 - Electrospun scaffolds for cardiac tissue engineering, in Electrospun Materials for Tissue Engineering and Biomedical Applications, T Uyar, E Kny, Editors. 2017, Woodhead Publishing. p. 289–297.

    Chapter  Google Scholar 

  79. Kowalski PS, Bhattacharya C, Afewerki S, and Langer R (2018) Smart Biomaterials: Recent Advances and Future Directions. ACS Biomaterials Science & Engineering 4(11):3809-3817

    Article  CAS  Google Scholar 

  80. Khalil H, Jummaat F, Yahya EB, Olaiya NG, Adnan AS, Abdat M, N AMN, Halim AS, Kumar USU, Bairwan R, and Suriani AB (2020) A Review on Micro- to Nanocellulose Biopolymer Scaffold Forming for Tissue Engineering Applications. Polymers (Basel) 12(9)

    Google Scholar 

  81. Jammalamadaka U and Tappa K (2018) Recent Advances in Biomaterials for 3D Printing and Tissue Engineering. J Funct Biomater 9(1)

    Google Scholar 

  82. Khan F and Tanaka M (2018) Designing Smart Biomaterials for Tissue Engineering. International Journal of Molecular Sciences 19(1)

    Google Scholar 

  83. Lee SJ, Yoo JJ, and Atala A (2018) Biomaterials and tissue engineering. Clinical regenerative medicine in urology:17–51

    Google Scholar 

  84. Janoušková O (2018) Synthetic polymer scaffolds for soft tissue engineering. Physiol Res 67(Suppl 2):S335–s348

    Article  Google Scholar 

  85. Feng P, He J, Peng S, Gao C, Zhao Z, Xiong S, and Shuai C (2019) Characterizations and interfacial reinforcement mechanisms of multicomponent biopolymer based scaffold. Materials Science and Engineering: C 100:809–825

    Article  CAS  Google Scholar 

  86. Iravani S and Varma RS (2019) Plants and plant-based polymers as scaffolds for tissue engineering. Green Chemistry 21(18):4839–4867

    Article  CAS  Google Scholar 

  87. Vogt L, Rivera LR, Liverani L, Piegat A, El Fray M, and Boccaccini AR (2019) Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. Materials Science and Engineering: C 103:109712

    Article  Google Scholar 

  88. Dzobo K, Thomford NE, Senthebane DA, Shipanga H, Rowe A, Dandara C, Pillay M, and Motaung KSCM (2018) Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine. Stem Cells International 2018:2495848

    Article  Google Scholar 

  89. Ambekar RS and Kandasubramanian B (2019) Progress in the Advancement of Porous Biopolymer Scaffold: Tissue Engineering Application. Industrial & Engineering Chemistry Research 58(16):6163–6194

    Article  CAS  Google Scholar 

  90. Bakhshandeh B, Zarrintaj P, Oftadeh MO, Keramati F, Fouladiha H, Sohrabi-Jahromi S, and Ziraksaz Z (2017) Tissue engineering; strategies, tissues, and biomaterials. Biotechnol Genet Eng Rev 33(2):144–172

    Article  CAS  Google Scholar 

  91. Bertuoli PT, Ordoño J, Armelin E, Pérez-Amodio S, Baldissera AF, Ferreira CA, Puiggalí J, Engel E, del Valle LJ, and Alemán C (2019) Electrospun Conducting and Biocompatible Uniaxial and Core–Shell Fibers Having Poly(lactic acid), Poly(ethylene glycol), and Polyaniline for Cardiac Tissue Engineering. ACS Omega 4(2):3660–3672

    Article  CAS  Google Scholar 

  92. Zhao P, Gu H, Mi H, Rao C, Fu J, and Turng L-s (2018) Fabrication of scaffolds in tissue engineering: A review. Frontiers of Mechanical Engineering 13(1):107–119

    Article  Google Scholar 

  93. Park S-B, Lih E, Park K-S, Joung YK, and Han DK (2017) Biopolymer-based functional composites for medical applications. Progress in Polymer Science 68:77–105

    Article  CAS  Google Scholar 

  94. Kakoria A and Sinha-Ray S (2018) A Review on Biopolymer-Based Fibers via Electrospinning and Solution Blowing and Their Applications. Fibers 6(3)

    Google Scholar 

  95. Avsar G, Agirbasli D, Agirbasli MA, Gunduz O, and Oner ET (2018) Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications. Carbohydrate Polymers 193:316–325

    Article  CAS  Google Scholar 

  96. Yasin S, Bakr ZH, Ali GAM, and Saeed I, Recycling Nanofibers from Polyethylene Terephthalate Waste Using Electrospinning Technique, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 805–821.

    Chapter  Google Scholar 

  97. Adil HI, Thalji MR, Yasin SA, Saeed IA, Assiri MA, Chong KF, and Ali GAM (2022) Metal–organic frameworks (MOFs) based nanofiber architectures for the removal of heavy metal ions. RSC Advances 12(3):1433–1450

    Article  CAS  Google Scholar 

  98. Essa WK, Yasin SA, Saeed IA, and Ali GAM (2021) Nanofiber-Based Face Masks and Respirators as COVID-19 Protection: A Review. Membranes 11(4):250

    Article  CAS  Google Scholar 

  99. Aldana AA and Abraham GA (2017) Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. International Journal of Pharmaceutics 523(2):441–453

    Article  CAS  Google Scholar 

  100. Tamay DG, Dursun Usal T, Alagoz AS, Yucel D, Hasirci N, and Hasirci V (2019) 3D and 4D Printing of Polymers for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology 7:164

    Article  Google Scholar 

  101. Woods I and Flanagan TC (2014) Electrospinning of biomimetic scaffolds for tissue-engineered vascular grafts: threading the path. Expert Review of Cardiovascular Therapy 12(7):815–832

    Article  CAS  Google Scholar 

  102. Cesur S, Ulag S, Ozak L, Gumussoy A, Arslan S, Yilmaz BK, Ekren N, Agirbasli M, kalaskar DM, and Gunduz O (2020) Production and characterization of elastomeric cardiac tissue-like patches for Myocardial Tissue Engineering. Polymer Testing 90:106613

    Google Scholar 

  103. Nikolova MP and Chavali MS (2019) Recent advances in biomaterials for 3D scaffolds: A review. Bioactive Materials 4:271–292

    Article  Google Scholar 

  104. Roy A, Saxena V, and Pandey LM (2018) 3D printing for cardiovascular tissue engineering: a review. Materials Technology 33(6):433–442

    Article  CAS  Google Scholar 

  105. Alizadeh-Osgouei M, Li Y, and Wen C (2019) A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioactive Materials 4:22–36

    Article  Google Scholar 

  106. Huang NF, Serpooshan V, Morris VB, Sayed N, Pardon G, Abilez OJ, Nakayama KH, Pruitt BL, Wu SM, Yoon Y-s, Zhang J, and Wu JC (2018) Big bottlenecks in cardiovascular tissue engineering. Communications Biology 1(1):199

    Article  Google Scholar 

  107. Kelly CN, Miller AT, Hollister SJ, Guldberg RE, and Gall K (2018) Design and Structure–Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering. Advanced Healthcare Materials 7(7):1701095

    Article  Google Scholar 

  108. Guo B and Ma PX (2018) Conducting Polymers for Tissue Engineering. Biomacromolecules 19(6):1764–1782

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazzatush Shimar Jamaludin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yaacob, A., Jamaludin, N.S. (2023). Biodegradable Polymers for Cardiac Tissue Engineering. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-09710-2_44

Download citation

Publish with us

Policies and ethics