Skip to main content

Biodegradable Polymers for Industrial Applications

  • Reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

These times, great attention in academia have been devoted to developing biodegradable materials to solve the problem of white pollution. Currently, biodegradable materials have a significant interest in various technological aspects, including food backing, drug delivery, regenerative medicine, orthopedic, medicine, and modern technological applications. This is due to their eco-friendly, biodegradability, biocompatibility, and high viability at low cost. There are many kinds of these polymers, including natural or synthetic. However, the widespread application of biodegradable materials still has more effort to go. This chapter will highlight and review the recent progress of utilizing these promising materials to provide readers with an intuitive and systematic understanding of biodegradable polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BPMs:

Biodegradable polymer materials

CRCF:

Conductive regenerated cellulose film

CS:

Chitosan

CAB:

Cellulose acetate butyrate

GTR:

Guided tissue regeneration

GBR:

Guided bone regeneration

MFCs:

Microbial fuel cells

m-TCPP:

Meso-tetra(4-carboxyphenyl)porphyrin

OSCs:

Organic solar cells

PDT:

Photodynamic therapy

References

  1. Haritz Sardon APD (2018) Plastics recycling with a difference. Science 360:380–381

    Article  Google Scholar 

  2. Mahmoodi Z, Abhari AR, Lalehloo RS, Bakr ZH, and Ali GAM (2022) Thermodynamic Studies on the Adsorption of Organophosphate Pesticides (Diazinon) onto ZnO/Polyethersulfone Nanocomposites. ChemistrySelect 7(2):e202103619

    Article  CAS  Google Scholar 

  3. Fan J, Zhang S, Li F, Yang Y, and Du M (2020) Recent advances in cellulose-based membranes for their sensing applications. Cellulose (Lond):1–23

    Google Scholar 

  4. Duan H, Song G, Qu S, Dong X, and Xu M (2019) Post-consumer packaging waste from express delivery in China. Resources, Conservation and Recycling 144:137–143

    Article  Google Scholar 

  5. Alhanish A and Ali GAM, Recycling the Plastic Wastes to Carbon Nanotubes, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 701–727.

    Chapter  Google Scholar 

  6. Soliman FS, El-Maghrabi HH, Ali GAM, Kammoun MA, and Nada AA, Reinforcement of Petroleum Wax By-Product Paraffins as Phase Change Materials for Thermal Energy Storage by Recycled Nanomaterials, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 823–850.

    Chapter  Google Scholar 

  7. Makhlouf ASH and Ali GAM, Waste Recycling Technologies for Nanomaterials Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. 2021, Springer: Springer.

    Google Scholar 

  8. Li X and Su X (2018) Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B 6(29):4714–4730

    Article  CAS  Google Scholar 

  9. Li K, Berton P, Kelley SP, and Rogers RD (2018) Singlet Oxygen Production and Tunable Optical Properties of Deacetylated Chitin-Porphyrin Crosslinked Films. Biomacromolecules 19(8):3291–3300

    Article  CAS  Google Scholar 

  10. Kim J-K, Kim DH, Joo SH, Choi B, Cha A, Kim KM, Kwon T-H, Kwak SK, Kang SJ, and Jin J (2017) Hierarchical Chitin Fibers with Aligned Nanofibrillar Architectures: A Nonwoven-Mat Separator for Lithium Metal Batteries. ACS Nano 11(6):6114–6121

    Article  CAS  Google Scholar 

  11. Zargar V, Asghari M, and Dashti A (2015) A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications. ChemBioEng Reviews 2(3):204–226

    Article  Google Scholar 

  12. Vilivalam VDaVD (1998) Pharmaceutical applications of chitosan. Pharm. Sci. Technol. 1:246–253.

    Google Scholar 

  13. Mohammed MA, Syeda JTM, Wasan KM, and Wasan EK (2017) An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 9(4)

    Google Scholar 

  14. Singh R, Shitiz K, and Singh A (2017) Chitin and chitosan: biopolymers for wound management. Int Wound J 14(6):1276–1289

    Article  Google Scholar 

  15. da Silva SB, Batista GL, and Santin CK, Chitosan for Sensors and Electrochemical Applications, in Chitin and Chitosan. 2019. p. 461–476.

    Google Scholar 

  16. Negm NA, Abubshait HA, Abubshait SA, Abou Kana MTH, Mohamed EA, and Betiha MM (2020) Performance of chitosan polymer as platform during sensors fabrication and sensing applications. International Journal of Biological Macromolecules 165:402–435

    Article  CAS  Google Scholar 

  17. Suginta W, Khunkaewla P, and Schulte A (2013) Electrochemical Biosensor Applications of Polysaccharides Chitin and Chitosan. Chemical Reviews 113(7):5458–5479

    Article  CAS  Google Scholar 

  18. Zou R, Shan S, Huang L, Chen Z, Lawson T, Lin M, Yan L, and Liu Y (2020) High-Performance Intraocular Biosensors from Chitosan-Functionalized Nitrogen-Containing Graphene for the Detection of Glucose. ACS Biomaterials Science & Engineering 6(1):673–679

    Article  CAS  Google Scholar 

  19. Vilouras A, Paul A, Kafi MA, and Dahiya R. Graphene Oxide-Chitosan Based Ultra-Flexible Electrochemical Sensor for Detection of Serotonin. in 2018 IEEE SENSORS. 2018.

    Google Scholar 

  20. Han Z, Shu J, Jiang Q, and Cui H (2018) Coreactant-Free and Label-Free Eletrochemiluminescence Immunosensor for Copeptin Based on Luminescent Immuno-Gold Nanoassemblies. Analytical Chemistry 90(10):6064–6070

    Article  CAS  Google Scholar 

  21. Bu Y, Xu H-X, Li X, Xu W-J, Yin Y-x, Dai H-l, Wang X-b, Huang Z-J, and Xu P-H (2018) A conductive sodium alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration. RSC Advances 8(20):10806–10817

    Article  CAS  Google Scholar 

  22. Roy BK, Tahmid I, and Rashid TU (2021) Chitosan-based materials for supercapacitor applications: a review. Journal of Materials Chemistry A 9(33):17592–17642

    Article  CAS  Google Scholar 

  23. Ghasem Hosseini M and Shahryari E (2017) A Novel High-Performance Supercapacitor based on Chitosan/Graphene Oxide-MWCNT/Polyaniline. Journal of Colloid and Interface Science 496:371–381

    Article  CAS  Google Scholar 

  24. Tseng C-H, Lin H-H, Hung C-W, Cheng IC, Luo S-C, Cheng IC, and Chen J-Z (2021) Electropolymerized Poly(3,4-ethylenedioxythiophene)/Screen-Printed Reduced Graphene Oxide–Chitosan Bilayer Electrodes for Flexible Supercapacitors. ACS Omega 6(25):16455–16464

    Google Scholar 

  25. Sharma K, Sharma V, and Sharma SS (2018) Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Research Letters 13(1):381

    Article  Google Scholar 

  26. Abdelaal SAA, Wanchun X, Fatma SMH, and Xiujian Z (2021) Screen-printed carbon black/SiO2 composite counter electrodes for dye-sensitized solar cells. Solar Energy 230:902–911

    Article  Google Scholar 

  27. Abdelaal SAA, Wanchun X, Fang S, Bin L, Hassan HAY, Ibrahim SA, and Xiujian Z (2021) MoS2/ZIF-8 derived nitrogen doped carbon (NC)-PEDOT: PSS as optically transparent counter electrode for dye-sensitized solar cells. Solar Energy 218:117–128

    Article  Google Scholar 

  28. Chalkias DA, Verykokkos NE, Kollia E, Petala A, Kostopoulos V, and Papanicolaou GC (2021) High-efficiency quasi-solid state dye-sensitized solar cells using a polymer blend electrolyte with “polymer-in-salt” conduction characteristics. Solar Energy 222:35–47

    Article  CAS  Google Scholar 

  29. Yahya WZN, Hong PZ, Mohd Zain WZZW, and Mohamed NM (2020) Tripropyl Chitosan Iodide-Based Gel Polymer Electrolyte as Quasi Solid-State Dye Sensitized Solar Cells. Materials Science Forum 997:69–76

    Article  Google Scholar 

  30. S. N. F. Yusuf MFA, H. C. Hassan, T. M. W. J. Bandara, B.-E. Mellander, M. A. Careem, and A. K. Arof (2014) Phthaloylchitosan-Based Gel Polymer Electrolytes for Efficient Dye-Sensitized Solar Cells. Journal of Chemistry 2014:1–8

    Google Scholar 

  31. Chawla P, Srivastava A, and Tripathi M (2019) Performance of chitosan based polymer electrolyte for natural dye sensitized solar cell. Environmental Progress & Sustainable Energy 38(2):630–634

    Article  CAS  Google Scholar 

  32. A.M. Zulkifli NIAMS, Shujahadeen B. Aziz, Shameer Hisham, Shahan.Shah, Amnani Abu Bakar, Z.H.Z. Abidin, H.A. Tajuddin, L. Sulaiman, M. A. Brza, Jihad M. Hadi, Shakhawan Al-Zangana (2020) Electrochemical Characteristics of Phthaloyl Chitosan Based Gel Polymer Electrolyte for Dye Sensitized Solar Cell Application. Int. J. Electrochem. Sci., 15:7434–7447

    Google Scholar 

  33. Ahmed ASA, Xiang W, Saana Amiinu I, and Zhao X (2018) Zeolitic-imidazolate-framework (ZIF-8)/PEDOT:PSS composite counter electrode for low cost and efficient dye-sensitized solar cells. New Journal of Chemistry 42(21):17303–17310

    Article  CAS  Google Scholar 

  34. Ahmed ASA, Xiang W, Shui F, Li B, Younes HHA, Amiinu IS, and Zhao X (2021) MoS2/ZIF-8 derived nitrogen doped carbon (NC)-PEDOT: PSS as optically transparent counter electrode for dye-sensitized solar cells. Solar Energy 218:117–128

    Article  CAS  Google Scholar 

  35. Ahmed ASA, Xiang W, Li Z, Amiinu IS, and Zhao X (2018) Yolk-shell m-SiO2@ Nitrogen doped carbon derived zeolitic imidazolate framework high efficient counter electrode for dye-sensitized solar cells. Electrochimica Acta 292:276–284

    Article  CAS  Google Scholar 

  36. En Mei Jin K-HP, Ju-Young Park, Jae-Wook Lee, Soon-Ho Yim, Xing Guan Zhao, Hal-Bon Gu, Sung-Young Cho, John Gerard Fisher, and Tae-Young Kim (2013) Preparation and Characterization of Chitosan Binder-Based TiO2 Electrode for Dye-Sensitized Solar Cells. International Journal of Photoenergy 2013:1–7

    Google Scholar 

  37. Martău GA, Mihai M, and Vodnar DC (2019) The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector-Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers (Basel) 11(11)

    Google Scholar 

  38. Devrimci HA, Yuksel AM, and Sanin FD (2012) Algal alginate: A potential coagulant for drinking water treatment. Desalination 299:16–21

    Article  CAS  Google Scholar 

  39. Siddhesh NP and Kevin JE (2012) Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 33(11):3279–3305

    Article  Google Scholar 

  40. Tatsuo Y, Shigeki S, Ken-Ichiro T, and Tomoko O (1998) Performance of photosynthetic electrochemical cells using immobilized Anabaena variabilis M-3 in discharge/culture cycles. Journal of Fermentation and Bioengineering 85(5):546–549

    Article  Google Scholar 

  41. Zhou M, He H, Jin T, and Wang H (2012) Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. Journal of Power Sources 214:216–219

    Article  CAS  Google Scholar 

  42. Ng FL, Phang SM, Periasamy V, Yunus K, and Fisher AC (2017) Enhancement of Power Output by using Alginate Immobilized Algae in Biophotovoltaic Devices. Sci Rep 7(1):16237

    Article  Google Scholar 

  43. Li Y, Zhao X, Xu Q, Zhang Q, and Chen D (2011) Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors. Langmuir 27(10):6458–63

    Article  CAS  Google Scholar 

  44. Lichen X, Hui H, Zeng F, Dianwen H, Dongmei Z, Abdul Sammed K, Muhammad U, and Lujun P (2019) Hierarchical macro-/meso-/microporous oxygen-doped carbon derived from sodium alginate: A cost-effective biomass material for binder-free supercapacitors. Materials & Design 182:108048

    Article  Google Scholar 

  45. Zhonglin D, Ming C, Feifei Y, Haoyang J, Jiuxing W, and Jianguo T (2021) Synergistic combination of TiO2-sol interconnecting-modified photoanode with alginate hydrogel-assisted electrolyte for quantum dots sensitized solar cells. Solar Energy 215:189–197

    Article  Google Scholar 

  46. Haokun Shi, ahong Xie, Peng Wei, Huamei Chen & Yue Qiang (2020) Application of Co-Mo bimetal/carbon composite in dyesensitized solar cells and its research on synergy mechanism. J Solid State Electr 24:753–759 https://doi.org/10.1007/s10008-020-04514-4

  47. Jiao T, Lian Q, Zhao T, Wang H, and Li D (2021) Preparation, Mechanical and Biological Properties of Inkjet Printed Alginate/Gelatin Hydrogel. Journal of Bionic Engineering 18(3):574–583

    Article  Google Scholar 

  48. Zhang YN, Tiina; Salas, Carlos; Arboleda, Julio; Hoeger, Ingrid C.; Rojas, Orlando J (2013) Cellulose Nanofibrils. Source: Journal of Renewable Materials 3:195–211

    Google Scholar 

  49. Barandun G, Soprani M, Naficy S, Grell M, Kasimatis M, Chiu KL, Ponzoni A, and Guder F (2019) Cellulose Fibers Enable Near-Zero-Cost Electrical Sensing of Water-Soluble Gases. ACS Sens 4(6):1662–1669

    Article  CAS  Google Scholar 

  50. Fukuhara M, Kuroda T, Hasegawa F, Hashida T, Takeda M, Fujima N, Morita M, and Nakatani T (2021) Amorphous cellulose nanofiber supercapacitors. Sci Rep 11(1):6436

    Google Scholar 

  51. Or T, Miettunen K, Cranston ED, Moran-Mirabal JM, and Vapaavuori J (2019) Cellulose Nanocrystal Aerogels as Electrolyte Scaffolds for Glass and Plastic Dye-Sensitized Solar Cells. ACS Appl Energy Mater 2(8):5635–5642

    Article  CAS  Google Scholar 

  52. Li J, Yang H, Huang K, Cao S, Ni Y, Huang L, Chen L, and Ouyang X (2018) Conductive regenerated cellulose film as counter electrode for efficient dye-sensitized solar cells. Cellulose 25(9):5113–5122

    Article  CAS  Google Scholar 

  53. Tian H, Tang Z, Zhuang X, Chen X, and Jing X (2012) Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Progress in Polymer Science 37(2):237–280

    Article  CAS  Google Scholar 

  54. Yimin Q (2016) 3 - A brief description of textile fibers. Woodhead Publishing Series in Textiles:23–42

    Google Scholar 

  55. Agarwal S, Sadegh H, Monajjemi Majid, Makhlouf ASH, Ali GAM, Memar AOH, Shahryari-ghoshekandi R, Tyagi I, and Gupta VK (2016) Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol. Journal of Molecular Liquids 218:191–197

    Article  CAS  Google Scholar 

  56. Sadegh H, Ali GAM, Agarwal S, and Gupta VK (2019) Surface Modification of MWCNTs with carboxylic-to-amine and their superb adsorption performance. International Journal of Environmental Research 13(3):523–531

    Article  CAS  Google Scholar 

  57. Daehwan C, Anil NN, and Yong Lak J (2012) Mechanical properties and biodegradability of electrospun soy protein Isolate/PVA hybrid nanofibers. Polymer Degradation and Stability 97(5):747–754

    Article  Google Scholar 

  58. Kunal Pal AKB, and Dipak K. Majumdar (2007) Preparation and Characterization of Polyvinyl Alcohol–Gelatin Hydrogel Membranes for Biomedical Applications. AAPS PharmSciTech 8 E142–E146

    Google Scholar 

  59. Andrea C, Roberto S, and Emo C (2002) Biodegradation of poly(vinyl alcohol) in selected mixed microbial culture and relevant culture filtrate. Polymer Degradation and Stability 75(3):447–458

    Article  Google Scholar 

  60. Gaaz TS, Sulong AB, Akhtar MN, Kadhum AA, Mohamad AB, and Al-Amiery AA (2015) Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites. Molecules 20(12):22833–47

    Article  CAS  Google Scholar 

  61. Natthaporn L, Thummanoon P, Soottawat B, and Surasit P (2012) Influences of degree of hydrolysis and molecular weight of poly(vinyl alcohol) (PVA) on properties of fish myofibrillar protein/PVA blend films. Food Hydrocolloids 29(1):226–233

    Article  Google Scholar 

  62. Saeideh A, Saeedeh M, Seyed Hamed A, and Farhad S (2020) Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges. Journal of Energy Storage 27:101072

    Article  Google Scholar 

  63. Aval LF, Ghoranneviss M, and Pour GB (2018) High-performance supercapacitors based on the carbon nanotubes, graphene and graphite nanoparticles electrodes. Heliyon 4(11):e00862

    Article  Google Scholar 

  64. Kulasekaran P, Maria Mahimai B, and Deivanayagam P (2020) Novel cross-linked poly(vinyl alcohol)-based electrolyte membranes for fuel cell applications. RSC Advances 10(44):26521–26527

    Article  CAS  Google Scholar 

  65. Gouda MH, Elessawy NA, and Toghan A (2021) Novel Crosslinked Sulfonated PVA/PEO Doped with Phosphated Titanium Oxide Nanotubes as Effective Green Cation Exchange Membrane for Direct Borohydride Fuel Cells. Polymers (Basel) 13(13)

    Google Scholar 

  66. Shawe S, Buchanan F, Harkin-Jones E, and Farrar D (2006) A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA). Journal of Materials Science 41(15):4832–4838

    Article  CAS  Google Scholar 

  67. Budak K, Sogut O, and Aydemir Sezer U (2020) A review on synthesis and biomedical applications of polyglycolic acid. Journal of Polymer Research 27(8)

    Google Scholar 

  68. John CM and Arthur JT (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346

    Article  Google Scholar 

  69. Caballé-Serrano J, Munar-Frau A, Delgado L, Pérez R, and Hernández-Alfaro F (2019) Physicochemical characterization of barrier membranes for bone regeneration. J Mech Behav Biomed Mater 97:13–20

    Article  Google Scholar 

  70. Scantlebury TV (1993) 1982–1992: a decade of technology development for guided tissue regeneration. J Periodontol 64(11 Suppl):1129–37

    Article  CAS  Google Scholar 

  71. Dimitriou R, Mataliotakis GI, Calori GM, and Giannoudis PV (2012) The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med 10:81

    Article  Google Scholar 

  72. Hutmacher D, Hürzeler MB, and Schliephake H (1996) A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Int J Oral Maxillofac Implants 11(5):667–78

    CAS  Google Scholar 

  73. McVicar I, Hatton PV, and Brook IM (1995) Self-reinforced polyglycolic acid membrane: a bioresorbable material for orbital floor repair. Initial clinical report. Br J Oral Maxillofac Surg 33(4):220–3

    Article  CAS  Google Scholar 

  74. Pant B, Park M, and Park S-J (2019) Drug Delivery Applications of Core-Sheath Nanofibers Prepared by Coaxial Electrospinning: A Review. Pharmaceutics 11(7):305

    Article  CAS  Google Scholar 

  75. Panchal SS and Vasava DV (2020) Biodegradable Polymeric Materials: Synthetic Approach. ACS Omega 5(9):4370–4379

    Article  CAS  Google Scholar 

  76. Ulery BD, Nair LS, and Laurencin CT (2011) Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics 49(12):832–864

    Article  CAS  Google Scholar 

  77. Moll F and Köller G (1990) Biodegradable Tablets Having a Matrix of Low Molecular Weight poly-L-Lactic Acid and poly-D,L-Lactic Acid. Archiv der Pharmazie 323(10):887–888

    Google Scholar 

  78. Hurrell S and Cameron RE (2003) The effect of buffer concentration, pH and buffer ions on the degradation and drug release from polyglycolide. Polymer International 52(3):358–366

    Article  CAS  Google Scholar 

  79. Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, and Glogauer M (2015) Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials 8(9):5744–5794

    Article  CAS  Google Scholar 

  80. van Bakelen NB, Buijs GJ, Jansma J, de Visscher JG, Hoppenreijs TJ, Bergsma JE, Stegenga B, and Bos RR (2014) Decision-making considerations in application of biodegradable fixation systems in maxillofacial surgery--a retrospective cohort study. J Craniomaxillofac Surg 42(5):417–22

    Google Scholar 

  81. Okuyama K, Yanamoto S, Naruse T, Sakamoto Y, Rokutanda S, Ohba S, Asahina I, and Umeda M (2018) Clinical complications in the application of polyglycolic acid sheets with fibrin glue after resection of mucosal lesions in oral cavity. Oral Surg Oral Med Oral Pathol Oral Radiol 125(6):541–546

    Article  Google Scholar 

  82. Singhvi MS, Zinjarde SS, and Gokhale DV (2019) Polylactic acid: synthesis and biomedical applications. Journal of Applied Microbiology 127(6):1612–1626

    Article  CAS  Google Scholar 

  83. Jasim A and Sunil KV Polylactides—Chemistry, Properties and Green Packaging Technology: A Review. International Journal of Food Properties 14(1):37–58

    Google Scholar 

  84. Masutani K, Kimura Y (2014) PLA synthesis. From the monomer to the polymer, in Poly(lactic acid) science and technology: processing, properties, additives and applications, pp. 1–36. https://doi.org/10.1039/9781782624806-00001. eISBN: 978-1-78262-480-6

  85. Crotts G and Park TG (1998) Protein delivery from poly(lactic-co-glycolic acid) biodegradable microspheres: release kinetics and stability issues. J Microencapsul 15(6):699–713

    Article  CAS  Google Scholar 

  86. Jamshidian M, Tehrany EA, Imran M, Jacquot M, and Desobry S (2010) Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Compr Rev Food Sci Food Saf 9(5):552–571

    Article  CAS  Google Scholar 

  87. Jasim A, Mehrajfatema ZM, Sheikha AA-Z, Antony J, and Rafael A (2022) Morphological, barrier, thermal, and rheological properties of high-pressure treated co-extruded polylactide films and the suitability for food packaging. Food Packaging and Shelf Life 32:100812

    Article  Google Scholar 

  88. Vinicius AOPS, Wilson SF-J, Diego PR, Jéssica SS, Rodrigo AAM, Juliano AB, and Bruno CJ (2020) 3D-printed reduced graphene oxide/polylactic acid electrodes: A new prototyped platform for sensing and biosensing applications. Biosensors and Bioelectronics 170:112684

    Article  Google Scholar 

  89. Manzanares Palenzuela CL, Novotny F, Krupicka P, Sofer Z, and Pumera M (2018) 3D-Printed Graphene/Polylactic Acid Electrodes Promise High Sensitivity in Electroanalysis. Anal Chem 90(9):5753–5757

    Article  CAS  Google Scholar 

  90. Baskakov SА, Baskakova YV, Lyskov NV, Dremova NN, Irzhak AV, Kumar Y, Michtchenok A, and Shulga YМ (2018) Fabrication of current collector using a composite of polylactic acid and carbon nano-material for metal-free supercapacitors with graphene oxide separators and microwave exfoliated graphite oxide electrodes. Electrochimica Acta 260:557–563

    Article  CAS  Google Scholar 

  91. Ghosh K, Ng S, Iffelsberger C, and Pumera M (2020) Inherent Impurities in Graphene/Polylactic Acid Filament Strongly Influence on the Capacitive Performance of 3D-Printed Electrode. Chemistry – A European Journal 26(67):15746–15753

    Article  CAS  Google Scholar 

  92. Lu Z, Lou Y, Ma P, Zhu K, Cong S, Wang C, Su X, and Zou G (2020) Highly Flexible and Transparent Polylactic Acid Composite Electrode for Perovskite Solar Cells. Solar RRL 4(10):2000320

    Article  CAS  Google Scholar 

  93. Makadia HK and Siegel SJ (2011) Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers 3(3):1377–1397

    Article  CAS  Google Scholar 

  94. Bag MA and Valenzuela LM (2017) Impact of the Hydration States of Polymers on Their Hemocompatibility for Medical Applications: A Review. International Journal of Molecular Sciences 18(8):1422

    Article  Google Scholar 

  95. Redhead HM, Davis SS, and Illum L (2001) Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J Control Release 70(3):353–63

    Article  CAS  Google Scholar 

  96. Qi J, Zhang Y, Liu X, Zhang Q, and Xiong C (2020) Preparation and properties of a biodegradable poly(lactide-co-glycolide)/poly(trimethylene carbonate) porous composite scaffold for bone tissue engineering. New Journal of Chemistry 44(34):14632–14641

    Article  Google Scholar 

  97. Sun C, Niu Y, Yang X, Liu M, Yang X, Huang X, and Zhao W (2015) Preparation of Hemocompatible Poly(lactic-co-glycolic acid)-F127 Nanospheres and Their Application to Biosensor for Analysis of Whole Blood. J Nanosci Nanotechnol 15(1):105–11

    Article  CAS  Google Scholar 

  98. Qiao T, Kim S, Lee W, and Lee H (2021) An enhanced fluorescence detection of a nitroaromatic compound using bacteria embedded in porous poly lactic-co-glycolic acid microbeads. Analyst 146(14):4615–4621

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaal S. A. Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ahmed, A.S.A., Negm, A.N.R.M., Mohammed, M., Abd El-Majeed, M., Ali, A.K., Abdelmotalleib, M. (2023). Biodegradable Polymers for Industrial Applications. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-09710-2_37

Download citation

Publish with us

Policies and ethics