Skip to main content

Recent Progress in Detection of Breast Cancer Biomarkers by Clinical and Imprinting Polymer-Based Sensors

  • Chapter
  • First Online:
Nanomaterials for Cancer Detection Using Imaging Techniques and Their Clinical Applications
  • 326 Accesses

Abstract

Breast cancer is threatening women all over the world. Invasive and noninvasive breast cancers have increased with time. According to 2021, 7.8 million women have been living with breast cancer, so that is making it the most prevalent cancer. Many women have no symptoms. Over time, in situ (stage 0) cancers can surround tissue, spread to lymph nodes, and continue to the other organs in the body (metastasis stage). Hence, the early diagnosis of breast cancer is so important. Breast cancer has been detected with mammograms, breast ultrasounds, and breast magnetic resonance imaging. For early detection, new sensitive, selective, invasive, reliable, and fast equipment or techniques are needed. At this point, molecularly imprinted polymers could be successful by electrochemical techniques. Molecularly imprinted polymers have selectivity features so that they can combine electrochemistry performance and give a successful output like the point of care equipment or lab-on-a-chip. In this chapter, recent developments in breast cancer detection by molecularly imprinted polymer-based electrochemical sensors are discussed. This chapter will be helpful to scientists, students, and industry in the development of new equipment, devices, and techniques for the detection of breast cancer markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cancer. https://www.who.int/health-topics/cancer#tab=tab_1. Accessed 3 Apr 2022.

  2. Asia S, Asia S, Hdi H. Source: Globocan. 2020;419:1–2.

    Google Scholar 

  3. Ruddy KJ, Winer EP. Male breast cancer: risk factors, biology, diagnosis, treatment, and survivorship. Ann Oncol. 2013;24:1434–43. https://doi.org/10.1093/ANNONC/MDT025.

    Article  CAS  Google Scholar 

  4. Parada H, Sun X, Tse CK, et al. Lifestyle patterns and survival following breast cancer in the Carolina breast cancer study. Epidemiology. 2019;30:83–92. https://doi.org/10.1097/EDE.0000000000000933.

    Article  Google Scholar 

  5. Board PS and PE. Breast cancer screening (PDQ®). PDQ Cancer Inf Summ. 2021:22–4. https://www.cancer.gov/types/breast/hp/breast-screening-pdq.

  6. Gucalp A, Traina TA, Eisner JR, et al. Male breast cancer: a disease distinct from female breast cancer. Breast Cancer Res Treat. 2019;173:37–48. https://doi.org/10.1007/S10549-018-4921-9.

    Article  Google Scholar 

  7. Clark BZ, Onisko A, Assylbekova B, et al. Breast cancer global tumor biomarkers: a quality assurance study of intratumoral heterogeneity. Mod Pathol. 2019;32:354–66. https://doi.org/10.1038/S41379-018-0153-0.

    Article  Google Scholar 

  8. Narod SA. Personalised medicine and population health: breast and ovarian cancer. Hum Genet. 2018;137:769–78. https://doi.org/10.1007/S00439-018-1944-6.

    Article  CAS  Google Scholar 

  9. Mahvi DA, Liu R, Grinstaff MW, et al. Local cancer recurrence: the realities, challenges, and opportunities for new therapies. CA Cancer J Clin. 2018;68:488–505. https://doi.org/10.3322/CAAC.21498.

    Article  Google Scholar 

  10. McCormack V, McKenzie F, Foerster M, et al. Breast cancer survival and survival gap apportionment in sub-Saharan Africa (ABC-DO): a prospective cohort study. Lancet Glob Health. 2020;8:e1203–12. https://doi.org/10.1016/S2214-109X(20)30261-8.

    Article  Google Scholar 

  11. Wang F, Fang Q, Ge Z, et al. Common BRCA1 and BRCA2 mutations in breast cancer families: a meta-analysis from a systematic review. Mol Biol Rep. 2012;39:2109–18. https://doi.org/10.1007/S11033-011-0958-0.

    Article  CAS  Google Scholar 

  12. Piletska EV, Guerreiro AR, Whitcombe MJ, Piletsky SA. Influence of the polymerization conditions on the performance of molecularly imprinted polymers. Macromolecules. 2009;42:4921–8. https://doi.org/10.1021/MA900432Z/ASSET/IMAGES/MA900432Z.SOCIAL.JPEG_V03.

    Article  CAS  Google Scholar 

  13. Poma A, Turner APF, Piletsky SA. Advances in the manufacture of MIP nanoparticles. Trends Biotechnol. 2010;28:629–37. https://doi.org/10.1016/J.TIBTECH.2010.08.006.

    Article  CAS  Google Scholar 

  14. Morelli I, Chiono V, Vozzi G, et al. Molecularly imprinted submicron spheres for applications in a novel model biosensor-film. Sensors Actuators B Chem. 2010;150:394–401. https://doi.org/10.1016/J.SNB.2010.06.046.

    Article  CAS  Google Scholar 

  15. Scorrano S, Mergola L, del Sole R, Vasapollo G. Synthesis of molecularly imprinted polymers for amino acid derivates by using different functional monomers. Int J Mol Sci. 2011;12:1735. https://doi.org/10.3390/IJMS12031735.

    Article  CAS  Google Scholar 

  16. Puoci F, Cirillo G, Curcio M, et al. Molecularly imprinted solid-phase extraction for the selective HPLC determination of alpha-tocopherol in bay leaves. Anal Chim Acta. 2007;593:164–70. https://doi.org/10.1016/J.ACA.2007.04.053.

    Article  CAS  Google Scholar 

  17. Baggiani C, Anfossi L, Giovannoli C. Solid-phase extraction of food contaminants using molecularly imprinted polymers. Anal Chim Acta. 2007;591:29–39. https://doi.org/10.1016/J.ACA.2007.01.056.

    Article  CAS  Google Scholar 

  18. Ramström O, Mosbach K. Synthesis and catalysis by molecularly imprinted materials. Curr Opin Chem Biol. 1999;3:759–64. https://doi.org/10.1016/S1367-5931(99)00037-X.

    Article  Google Scholar 

  19. Suwanwong Y, Boonpangrak S. Molecularly imprinted polymers for the extraction and determination of water-soluble vitamins: a review from 2001 to 2020. Eur Polym J. 2021;161:110835. https://doi.org/10.1016/J.EURPOLYMJ.2021.110835.

    Article  CAS  Google Scholar 

  20. Vasapollo G, Del SR, Mergola L, et al. Molecularly imprinted polymers: present and future prospective. OPEN ACCESS Int J Mol Sci. 2011;12:12. https://doi.org/10.3390/ijms12095908.

    Article  CAS  Google Scholar 

  21. Pichon V, Chapuis-Hugon F. Role of molecularly imprinted polymers for selective determination of environmental pollutants–a review. Anal Chim Acta. 2008;622:48–61. https://doi.org/10.1016/J.ACA.2008.05.057.

    Article  CAS  Google Scholar 

  22. Andersson LI. Molecular imprinting: developments and applications in the analytical chemistry field. J Chromatogr B Biomed Sci Appl. 2000;745:3–13. https://doi.org/10.1016/S0378-4347(00)00135-3.

    Article  CAS  Google Scholar 

  23. Wei S, Mizaikoff B. Recent advances on noncovalent molecular imprints for affinity separations. J Sep Sci. 2007;30:1794–805. https://doi.org/10.1002/JSSC.200700166.

    Article  CAS  Google Scholar 

  24. Tamayo FG, Turiel E, Martín-Esteban A. Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: recent developments and future trends. J Chromatogr A. 2007;1152:32–40. https://doi.org/10.1016/J.CHROMA.2006.08.095.

    Article  CAS  Google Scholar 

  25. Haginaka J. Monodispersed, molecularly imprinted polymers as affinity-based chromatography media. J Chromatogr B Anal Technol Biomed Life Sci. 2008;866:3–13. https://doi.org/10.1016/J.JCHROMB.2007.07.019.

    Article  CAS  Google Scholar 

  26. Lasáková M, Jandera P. Molecularly imprinted polymers and their application in solid-phase extraction. J Sep Sci. 2009;32:799–812. https://doi.org/10.1002/JSSC.200800506.

    Article  Google Scholar 

  27. Campuzano S, Pedrero M, Pingarrón JM. Non-invasive breast cancer diagnosis through electrochemical biosensing at different molecular levels. Sensors. 2017;17:1993. https://doi.org/10.3390/S17091993.

    Article  Google Scholar 

  28. Miao P, Wang B, Yu Z, et al. Ultrasensitive electrochemical detection of microRNA with star trigon structure and endonuclease mediated signal amplification. Biosens Bioelectron. 2015;63:365–70. https://doi.org/10.1016/J.BIOS.2014.07.075.

    Article  CAS  Google Scholar 

  29. Cardoso AR, Moreira FTC, Fernandes R, Sales MGF. Novel and simple electrochemical biosensor monitoring attomolar levels of miRNA-155 in breast cancer. Biosens Bioelectron. 2016;80:621–30. https://doi.org/10.1016/J.BIOS.2016.02.035.

    Article  CAS  Google Scholar 

  30. Moscovici M, Bhimji A, Kelley SO. Rapid and specific electrochemical detection of prostate cancer cells using an aperture sensor array. Lab Chip. 2013;13:940–6. https://doi.org/10.1039/C2LC41049D.

    Article  CAS  Google Scholar 

  31. Zhu Y, Chandra P, Shim Y-B. Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine–Au nanoparticle–aptamer bioconjugate. Anal Chem. 2013;85:1058–64. https://doi.org/10.1021/ac302923k.

    Article  CAS  Google Scholar 

  32. Azimzadeh M, Rahaie M, Nasirizadeh N, et al. An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosens Bioelectron. 2016;77:99–106. https://doi.org/10.1016/J.BIOS.2015.09.020.

    Article  CAS  Google Scholar 

  33. Chen M, Wang Y, Su H, et al. Three-dimensional electrochemical DNA biosensor based on 3D graphene-Ag nanoparticles for sensitive detection of CYFRA21-1 in non-small cell lung cancer. Sensors Actuators B Chem. 2018;255:2910–8. https://doi.org/10.1016/j.snb.2017.09.111.

    Article  CAS  Google Scholar 

  34. Wang K, He MQ, Zhai FH, et al. A novel electrochemical biosensor based on polyadenine modified aptamer for label-free and ultrasensitive detection of human breast cancer cells. Talanta. 2017;166:87–92. https://doi.org/10.1016/J.TALANTA.2017.01.052.

    Article  CAS  Google Scholar 

  35. Fuller MS, Lee CI, Elmore JG. Breast cancer screening: an evidence-based update. Med Clin North Am. 2015;99:451–68. https://doi.org/10.1016/J.MCNA.2015.01.002.

    Article  Google Scholar 

  36. Nazário ACP, Facina G, Filassi JR. Breast cancer: news in diagnosis and treatment. Rev Assoc Med Bras. 2015;61:543–52. https://doi.org/10.1590/1806-9282.61.06.543.

    Article  Google Scholar 

  37. Pace LE, Keating NL. A systematic assessment of benefits and risks to guide breast cancer screening decisions. JAMA. 2014;311:1327–35. https://doi.org/10.1001/JAMA.2014.1398.

    Article  CAS  Google Scholar 

  38. Friedewald SM, Rafferty EA, Rose SL, et al. Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA. 2014;311:2499–507. https://doi.org/10.1001/JAMA.2014.6095.

    Article  CAS  Google Scholar 

  39. Svahn TM, Houssami N, Sechopoulos I, Mattsson S. Review of radiation dose estimates in digital breast tomosynthesis relative to those in two-view full-field digital mammography. Breast. 2015;24:93–9. https://doi.org/10.1016/J.BREAST.2014.12.002.

    Article  CAS  Google Scholar 

  40. Brem RF, Lenihan MJ, Lieberman J, Torrente J. Screening breast ultrasound: past, present, and future. AJR Am J Roentgenol. 2015;204:234–40. https://doi.org/10.2214/AJR.13.12072.

    Article  Google Scholar 

  41. Lehman CD, Gatsonis C, Kuhl CK, et al. MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med. 2007;356:1295–303. https://doi.org/10.1056/NEJMOA065447.

    Article  CAS  Google Scholar 

  42. Houssami N, Turner R, Macaskill P, et al. An individual person data meta-analysis of preoperative magnetic resonance imaging and breast cancer recurrence. J Clin Oncol. 2014;32:392–401. https://doi.org/10.1200/JCO.2013.52.7515.

    Article  Google Scholar 

  43. Berg WA, Blume JD, Cormack JB, et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 2008;299:2151–63. https://doi.org/10.1001/JAMA.299.18.2151.

    Article  CAS  Google Scholar 

  44. Liberman L. Centennial dissertation. Percutaneous imaging-guided core breast biopsy: state of the art at the millennium. AJR Am J Roentgenol. 2000;174:1191–9. https://doi.org/10.2214/AJR.174.5.1741191.

    Article  CAS  Google Scholar 

  45. Villegas-Carlos F, Andino-Araque V, Valverde-Quintana M, et al. Predictive factors of invasion in ductal carcinoma in situ diagnosed by core-needle biopsy. Cir Cir. 2022;90:41–9. https://doi.org/10.24875/CIRU.21000136.

    Article  Google Scholar 

  46. Bennett NC, Farah CS. Next-generation sequencing in clinical oncology: next steps towards clinical validation. Cancers (Basel). 2014;6:2296–312. https://doi.org/10.3390/CANCERS6042296.

    Article  Google Scholar 

  47. Perou CM, Sørile T, Eisen MB, et al. Molecular portraits of human breast tumors. Nature. 2000;406:747–52. https://doi.org/10.1038/35021093.

    Article  CAS  Google Scholar 

  48. Ross JS, Linette GP, Stec J, et al. Breast cancer biomarkers and molecular medicine. Expert Rev Mol Diagn. 2003;3:573–85. https://doi.org/10.1586/14737159.3.5.573.

    Article  CAS  Google Scholar 

  49. Dowsett M, Dunbier AK. Emerging biomarkers and new understanding of traditional markers in personalized therapy for breast cancer. Clin Cancer Res. 2008;14:8019–26. https://doi.org/10.1158/1078-0432.CCR-08-0974.

    Article  CAS  Google Scholar 

  50. Lim E, Metzger-Filho O, Winer EP. The natural history of hormone receptor-positive breast cancer. Oncology (Williston Park). 2012;26:688–95.

    Google Scholar 

  51. Pan H, Gray R, Braybrooke J, et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med. 2017;377:1836–46. https://doi.org/10.1056/NEJMOA1701830.

    Article  Google Scholar 

  52. Patani N, Martin LA, Dowsett M. Biomarkers for the clinical management of breast cancer: international perspective. Int J Cancer. 2013;133:1–13. https://doi.org/10.1002/IJC.27997.

    Article  CAS  Google Scholar 

  53. Mohammed H, Russell IA, Stark R, et al. Progesterone receptor modulates ERα action in breast cancer. Nature. 2015;523:313–7. https://doi.org/10.1038/NATURE14583.

    Article  CAS  Google Scholar 

  54. Rubin I, Yarden Y. The basic biology of HER2. Ann Oncol Off J Eur Soc Med Oncol. 2001;12 Suppl 1:S3–8. https://doi.org/10.1093/ANNONC/12.SUPPL_1.S3.

    Article  CAS  Google Scholar 

  55. Ross JS, Slodkowska EA, Symmans WF, et al. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist. 2009;14:320–68. https://doi.org/10.1634/THEONCOLOGIST.2008-0230.

    Article  CAS  Google Scholar 

  56. Luporsi E, André F, Spyratos F, et al. Ki-67: level of evidence and methodological considerations for its role in the clinical management of breast cancer: analytical and critical review. Breast Cancer Res Treat. 2012;132:895–915. https://doi.org/10.1007/S10549-011-1837-Z.

    Article  CAS  Google Scholar 

  57. Ding Y, Ding K, Qian H, et al. Impact on survival of estrogen receptor, progesterone receptor, and Ki-67 expression discordance pre- and post-neoadjuvant chemotherapy in breast cancer. PLoS One. 2020;15:e0231895. https://doi.org/10.1371/JOURNAL.PONE.0231895.

    Article  CAS  Google Scholar 

  58. Huang SH, O’Sullivan B. Overview of the 8th edition TNM classification for head and neck cancer. Curr Treat Options in Oncol. 2017;18:1–13. https://doi.org/10.1007/S11864-017-0484-Y.

    Article  CAS  Google Scholar 

  59. Fischer JP, Wes AM, Tuggle CT, et al. Mastectomy with or without immediate implant reconstruction has similar 30-day perioperative outcomes. J Plast Reconstr Aesthet Surg. 2014;67:1515–22. https://doi.org/10.1016/J.BJPS.2014.07.021.

    Article  Google Scholar 

  60. Veronesi U, Saccozzi R, Del Vecchio M, et al. Comparing radical mastectomy with quadrantectomy, axillary dissection, and radiotherapy in patients with small cancers of the breast. N Engl J Med. 1981;305:6–11. https://doi.org/10.1056/NEJM198107023050102.

    Article  CAS  Google Scholar 

  61. Giuliano AE, Kirgan DM, Guenther JM, Morton DL. Lymphatic mapping and sentinel lymphadenectomy for breast cancer. Ann Surg. 1994;220:391–401. https://doi.org/10.1097/00000658-199409000-00015.

    Article  CAS  Google Scholar 

  62. Wang X, Xu L, Yin Z, et al. Locoregional recurrence-associated factors and risk-adapted postmastectomy radiotherapy for breast cancer staged in cT1-2N0-1 after neoadjuvant chemotherapy. Cancer Manag Res. 2018;10:4105–12. https://doi.org/10.2147/CMAR.S173628.

    Article  Google Scholar 

  63. Tang L, Matsushita H, Jingu K. Controversial issues in radiotherapy after breast-conserving surgery for early breast cancer in older patients: a systematic review. J Radiat Res. 2018;59:789–93. https://doi.org/10.1093/JRR/RRY071.

    Article  Google Scholar 

  64. Turaka A, Freedman GM, Li T, et al. Young age is not associated with increased local recurrence for DCIS treated by breast-conserving surgery and radiation. J Surg Oncol. 2009;100:25–31. https://doi.org/10.1002/JSO.21284.

    Article  Google Scholar 

  65. Ng SP, David S, Alamgeer M, Ganju V. Impact of pretreatment combined (18)F-fluorodeoxyglucose positron emission tomography/computed tomography staging on radiation therapy treatment decisions in locally advanced breast cancer. Int J Radiat Oncol Biol Phys. 2015;93:111–7. https://doi.org/10.1016/J.IJROBP.2015.05.012.

    Article  Google Scholar 

  66. Haviland JS, Owen JR, Dewar JA, et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomized controlled trials. Lancet Oncol. 2013;14:1086–94. https://doi.org/10.1016/S1470-2045(13)70386-3.

    Article  Google Scholar 

  67. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26. https://doi.org/10.1056/NEJMOA041588.

    Article  CAS  Google Scholar 

  68. Wu YT, Xu Z, Zhang K, et al. Efficacy and cardiac safety of the concurrent use of trastuzumab and anthracycline-based neoadjuvant chemotherapy for HER2-positive breast cancer: a systematic review and meta-analysis. Ther Clin Risk Manag. 2018;14:1789–97. https://doi.org/10.2147/TCRM.S176214.

    Article  CAS  Google Scholar 

  69. Tolaney SM, Barry WT, Dang CT, et al. Adjuvant paclitaxel and trastuzumab for node-negative, HER2-positive breast cancer. N Engl J Med. 2015;372:134–41. https://doi.org/10.1056/NEJMOA1406281.

    Article  Google Scholar 

  70. Mavroudis D, Saloustros E, Malamos N, et al. Six versus 12 months of adjuvant trastuzumab in combination with dose-dense chemotherapy for women with HER2-positive breast cancer: a multicenter randomized study by the Hellenic Oncology Research Group (HORG). Ann Oncol Off J Eur Soc Med Oncol. 2015;26:1333–40. https://doi.org/10.1093/ANNONC/MDV213.

    Article  CAS  Google Scholar 

  71. Pagani O, Regan MM, Walley BA, et al. Adjuvant exemestane with ovarian suppression in premenopausal breast cancer. N Engl J Med. 2014;371:107–18. https://doi.org/10.1056/NEJMOA1404037.

    Article  Google Scholar 

  72. Davies C, Pan H, Godwin J, et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of estrogen receptor-positive breast cancer: ATLAS, a randomized trial. Lancet (London, England). 2013;381:805–16. https://doi.org/10.1016/S0140-6736(12)61963-1.

    Article  CAS  Google Scholar 

  73. Leal F, Liutti VT, Antunes dos Santos VC, et al. Neoadjuvant endocrine therapy for resectable breast cancer: a systematic review and meta-analysis. Breast. 2015;24:406–12. https://doi.org/10.1016/J.BREAST.2015.03.004.

    Article  Google Scholar 

  74. Finn RS, Crown JP, Lang I, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of estrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomized phase 2 study. Lancet Oncol. 2015;16:25–35. https://doi.org/10.1016/S1470-2045(14)71159-3.

    Article  CAS  Google Scholar 

  75. Turner NC, Ro J, André F, et al. Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med. 2015;373:209–19. https://doi.org/10.1056/NEJMOA1505270.

    Article  CAS  Google Scholar 

  76. Swain SM, Baselga J, Kim S-B, et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med. 2015;372:724–34. https://doi.org/10.1056/NEJMOA1413513.

    Article  CAS  Google Scholar 

  77. Kilpatrick ES, Lind MJ. Appropriate requesting of serum tumor markers. BMJ. 2009;339:859. https://doi.org/10.1136/BMJ.B3111.

    Article  Google Scholar 

  78. Shah R, Rosso K, David Nathanson S. Pathogenesis, prevention, diagnosis and treatment of breast cancer. World J Clin Oncol. 2014;5:283–98. https://doi.org/10.5306/WJCO.V5.I3.283.

    Article  Google Scholar 

  79. Banegas MP, Bird Y, Moraros J, et al. Breast cancer knowledge, attitudes, and early detection practices in United States-Mexico border Latinas. J Women’s Health (Larchmt). 2012;21:101–7. https://doi.org/10.1089/JWH.2010.2638.

    Article  Google Scholar 

  80. Donepudi MS, Kondapalli K, Amos SJ, Venkanteshan P. Breast cancer statistics and markers. J Cancer Res Ther. 2014;10:506–11. https://doi.org/10.4103/0973-1482.137927.

    Article  Google Scholar 

  81. Duffy MJ, Evoy D, McDermott EW. CA 15-3: uses and limitation as a biomarker for breast cancer. Clin Chim Acta. 2010;411:1869–74. https://doi.org/10.1016/J.CCA.2010.08.039.

    Article  CAS  Google Scholar 

  82. Kurian S, Khan M, Grant M. CA 27-29 in patients with breast cancer with pulmonary fibrosis. Clin Breast Cancer. 2008;8:538–40. https://doi.org/10.3816/CBC.2008.N.067.

    Article  Google Scholar 

  83. Zheng G, Yu H, Hemminki A, et al. Familial associations of female breast cancer with other cancers. Int J Cancer. 2017;141:2253–9. https://doi.org/10.1002/IJC.30927.

    Article  CAS  Google Scholar 

  84. Couto E, Hemminki K. Estimates of heritable and environmental components of familial breast cancer using family history information. Br J Cancer. 2007;96:1740–2. https://doi.org/10.1038/SJ.BJC.6603753.

    Article  CAS  Google Scholar 

  85. Claus EB, Schildkraut JM, Thompson WD, Risch NJ. The genetic attributable risk of breast and ovarian cancer. Cancer. 1996;77:2318–24. https://doi.org/10.1002/(sici)1097-0142(19960601)77:11<2318::aid-cncr21>3.0.co;2-z.

    Article  CAS  Google Scholar 

  86. Apostolou P, Fostira F. Hereditary breast cancer: the era of new susceptibility genes. Biomed Res Int. 2013;2013:747318. https://doi.org/10.1155/2013/747318.

    Article  CAS  Google Scholar 

  87. Nielsen FC, Van Overeem HT, Sørensen CS. Hereditary breast and ovarian cancer: new genes in confined pathways. Nat Rev Cancer. 2016;16:599–612. https://doi.org/10.1038/NRC.2016.72.

    Article  CAS  Google Scholar 

  88. Mavaddat N, Barrowdale D, Andrulis IL, et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomark Prev. 2012;21:134–47. https://doi.org/10.1158/1055-9965.EPI-11-0775.

    Article  CAS  Google Scholar 

  89. Vocka M, Zimovjanova M, Bielcikova Z, et al. Estrogen receptor status oppositely modifies breast cancer prognosis in BRCA1/BRCA2 mutation carriers versus non-carriers. Cancers (Basel). 2019;11. https://doi.org/10.3390/CANCERS11060738.

  90. Yadav S, Couch FJ. Germline genetic testing for breast cancer risk: the past, present, and future. Am Soc Clin Oncol Educ Book Am Soc Clin Oncol Annu Meet. 2019;39:61–74. https://doi.org/10.1200/EDBK_238987.

    Article  Google Scholar 

  91. Gilkes DM, Semenza GL. Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol. 2013;9:1623–36. https://doi.org/10.2217/FON.13.92.

    Article  CAS  Google Scholar 

  92. Salceda S, Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem. 1997;272:22642–7. https://doi.org/10.1074/JBC.272.36.22642.

    Article  CAS  Google Scholar 

  93. Masoumi Moghaddam S, Amini A, Morris DL, Pourgholami MH. Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev. 2012;31:143–62. https://doi.org/10.1007/S10555-011-9337-5.

    Article  CAS  Google Scholar 

  94. Zhang L, Kirchhoff T, Yee CJ, Offit K. A rapid and reliable test for BRCA1 and BRCA2 founder mutation analysis in paraffin tissue using pyrosequencing. J Mol Diagn. 2009;11:176–81. https://doi.org/10.2353/JMOLDX.2009.080137.

    Article  CAS  Google Scholar 

  95. Meisel JL, Hyman DM, Garg K, et al. The performance of BRCA1 immunohistochemistry for detecting germline, somatic, and epigenetic BRCA1 loss in high-grade serous ovarian cancer. Ann Oncol Off J Eur Soc Med Oncol. 2014;25:2372–8. https://doi.org/10.1093/ANNONC/MDU461.

    Article  CAS  Google Scholar 

  96. Garg K, Levine DA, Olvera N, et al. BRCA1 immunohistochemistry in a molecularly characterized cohort of ovarian high-grade serous carcinomas. Am J Surg Pathol. 2013;37:138–46. https://doi.org/10.1097/PAS.0B013E31826CABBD.

    Article  Google Scholar 

  97. Smith KL, Isaacs C. BRCA mutation testing in determining breast cancer therapy. Cancer J. 2011;17:492–9. https://doi.org/10.1097/PPO.0B013E318238F579.

    Article  CAS  Google Scholar 

  98. You M, Yang S, Tang W, et al. Molecularly imprinted polymers-based electrochemical DNA biosensor for the determination of BRCA-1 amplified by SiO 2@Ag. Biosens Bioelectron. 2018;112:72–8. https://doi.org/10.1016/J.BIOS.2018.04.038.

    Article  CAS  Google Scholar 

  99. Ali IU, Campbell G, Lidereau R, Callahan R. Amplification of c-erbB-2 and aggressive human breast tumors? Science. 1988;240:1795–6. https://doi.org/10.1126/SCIENCE.3289120.

    Article  Google Scholar 

  100. Garnock-Jones KP, Keating GM, Scott LJ. Trastuzumab: a review of its use as adjuvant treatment in human epidermal growth factor receptor 2 (HER2)-positive early breast cancer. Drugs. 2010;70:215–39. https://doi.org/10.2165/11203700-000000000-00000.

    Article  CAS  Google Scholar 

  101. Wolff AC, Hammond MEH, Hicks DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med. 2014;138:241–56. https://doi.org/10.5858/ARPA.2013-0953-SA.

    Article  Google Scholar 

  102. Wolff AC, Hammond MEH, Schwartz JN, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med. 2007;131:18–43. https://doi.org/10.5858/2007-131-18-ASOCCO.

    Article  CAS  Google Scholar 

  103. Pacheco JG, Rebelo P, Freitas M, et al. Breast cancer biomarker (HER2-ECD) detection using a molecularly imprinted electrochemical sensor. Sensors Actuators B Chem. 2018;273:1008–14. https://doi.org/10.1016/J.SNB.2018.06.113.

    Article  CAS  Google Scholar 

  104. Amayo AA, Kuria JG. Clinical application of tumor markers: a review. East Afr Med J. 2009;86. https://doi.org/10.4314/EAMJ.V86I12.62909.

  105. Pacheco JG, Silva MSV, Freitas M, et al. Molecularly imprinted electrochemical sensor for the point-of-care detection of a breast cancer biomarker (CA 15-3). Sensors Actuators B Chem. 2018;256:905–12. https://doi.org/10.1016/J.SNB.2017.10.027.

    Article  CAS  Google Scholar 

  106. Ribeiro JA, Pereira CM, Silva AF, Sales MGF. Disposable electrochemical detection of breast cancer tumour marker CA 15-3 using poly(Toluidine Blue) as imprinted polymer receptor. Biosens Bioelectron. 2018;109:246–54. https://doi.org/10.1016/J.BIOS.2018.03.011.

    Article  CAS  Google Scholar 

  107. Gomes RS, Moreira FTC, Fernandes R, Goreti Sales MF. Sensing CA 15-3 in point-of-care by electropolymerizing O-phenylenediamine (oPDA) on Au-screen printed electrodes. PLoS One. 2018;13:e0196656. https://doi.org/10.1371/JOURNAL.PONE.0196656.

    Article  Google Scholar 

  108. Santos ART, Moreira FTC, Helguero LA, Sales MGF. Antibody biomimetic material made of pyrrole for CA 15-3 and its application as sensing material in ion-selective electrodes for potentiometric detection. Biosensors. 2018;8:8. https://doi.org/10.3390/BIOS8010008.

    Article  Google Scholar 

  109. Hammarström S. The carcinoembryonic antigen (CEA) family: structures, suggested functions, and expression in normal and malignant tissues. Semin Cancer Biol. 1999;9:67–81. https://doi.org/10.1006/SCBI.1998.0119.

    Article  Google Scholar 

  110. Grunnet M, Sorensen JB. Carcinoembryonic antigen (CEA) as a tumor marker in lung cancer. Lung Cancer. 2012;76:138–43. https://doi.org/10.1016/J.LUNGCAN.2011.11.012.

    Article  CAS  Google Scholar 

  111. Wu S g, He Z y, Zhou J, et al. Serum levels of CEA and CA15-3 in different molecular subtypes and prognostic value in Chinese breast cancer. Breast. 2014;23:88–93. https://doi.org/10.1016/J.BREAST.2013.11.003.

    Article  Google Scholar 

  112. Park BW, Oh JW, Kim JH, et al. Preoperative CA 15-3 and CEA serum levels as predictor for breast cancer outcomes. Ann Oncol Off J Eur Soc Med Oncol. 2008;19:675–81. https://doi.org/10.1093/ANNONC/MDM538.

    Article  Google Scholar 

  113. Shao Y, Sun X, He Y, et al. Elevated levels of serum tumor markers CEA and CA15-3 are prognostic parameters for different molecular subtypes of breast cancer. PLoS One. 2015;10:e0133830. https://doi.org/10.1371/JOURNAL.PONE.0133830.

    Article  Google Scholar 

  114. Bahrami-Ahmadi A, Makarian F, Mortazavizadeh MR, et al. Symptomatic metastasis prediction with serial measurements of CA 15.3 in primary breast cancer patients. J Res Med Sci. 2012;17:850.

    Google Scholar 

  115. Asad-Ur-Rahman F, Saif MW. Elevated level of serum carcinoembryonic antigen (CEA) and search for a malignancy: a case report. Cureus. 2016;8:e648. https://doi.org/10.7759/CUREUS.648.

    Article  Google Scholar 

  116. Lee JS, Park S, Park JM, et al. Elevated levels of preoperative CA 15-3 and CEA serum levels have independently poor prognostic significance in breast cancer. Ann Oncol Off J Eur Soc Med Oncol. 2013;24:1225–31. https://doi.org/10.1093/ANNONC/MDS604.

    Article  CAS  Google Scholar 

  117. Puglisi F, Fontanella C, Numico G, et al. Follow-up of patients with early breast cancer: is it time to rewrite the story? Crit Rev Oncol Hematol. 2014;91:130–41. https://doi.org/10.1016/J.CRITREVONC.2014.03.001.

    Article  Google Scholar 

  118. Li X, Dai D, Chen B, et al. Clinicopathological and prognostic significance of cancer antigen 15-3 and carcinoembryonic antigen in breast cancer: a meta-analysis including 12,993 patients. Dis Markers. 2018;2018:1–15. https://doi.org/10.1155/2018/9863092.

    Article  Google Scholar 

  119. Hing JX, Mok CW, Tan PT, et al. Clinical utility of tumor marker velocity of cancer antigen 15-3 (CA 15-3) and carcinoembryonic antigen (CEA) in breast cancer surveillance. Breast. 2020;52:95–101. https://doi.org/10.1016/J.BREAST.2020.05.005.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakirhan, N.K., Yucel, C. (2022). Recent Progress in Detection of Breast Cancer Biomarkers by Clinical and Imprinting Polymer-Based Sensors. In: Chaughule, R.S., Patkar, D.P., Ramanujan, R.V. (eds) Nanomaterials for Cancer Detection Using Imaging Techniques and Their Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-09636-5_11

Download citation

Publish with us

Policies and ethics