Skip to main content

A Review of Fault Detection Methods in Smart Pneumatic Systems and Identification of Key Failure Indicators

  • Conference paper
  • First Online:
Innovations in Mechatronics Engineering II (icieng 2022)

Abstract

Smart pneumatic systems represent a major part of overall actuation systems, close to electric and hydraulic systems as market share. Considering this, fault detection and maintenance represent a key point in the long-term reliability of pneumatic systems. In addition, proper resource management is needed to ensure long-term sustainability given the current global situation. This paper aims to review the main areas where smart pneumatic systems are used, highlight component failure modes, and identify the main failure detection methods and parameters of interest to be monitored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pneumatic Equipment Market: Size, Share and Technology Report. https://www.bccresearch.com/market-research/instrumentation-and-sensors/pneumatic-equipment-technologies-and-global-markets-report.html. Accessed 11 Sept 2021

  2. Suzumori, K., Tanaka, J., Kanda, T.: Development of an intelligent pneumatic cylinder and its application to pneumatic servo mechanism. In: Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 479–484 (2005)

    Google Scholar 

  3. Faudzi, A.A.M., Suzumori, K., Wakimoto, S.: Distributed physical human machine interaction using intelligent pneumatic cylinders. In: 2008 International Symposium on Micro-NanoMechatronics and Human Science, pp. 249–254 (2008)

    Google Scholar 

  4. Faudzi, A.A.M., bin Osman, K., Rahmat, M.F., Mustafa, N.D., Azman, M.A., Suzumori, K.: Controller design for simulation control of intelligent pneumatic actuators (IPA) system. Procedia Eng. 41, 593–599 (2012)

    Google Scholar 

  5. Glebov, N., Kruglova, T., Shoshiashvili, M.: Intelligent electro-pneumatic module for industrial robots. In: 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), pp. 01–04 (2019)

    Google Scholar 

  6. Kaitwanidvilai, S., Parnichkun, M.: Force control in a pneumatic system using hybrid adaptive neuro-fuzzy model reference control. Mechatronics 15, 23–41 (2005)

    Article  Google Scholar 

  7. Wang, C.-L., Renn, J.-C.: Study on the motion control of pneumatic actuator via wireless bluetooth communication. In: 2018 IEEE International Conference on Applied System Invention (ICASI), pp. 601–604 (2018)

    Google Scholar 

  8. Belforte, G., Raparelli, T., Mazza, L.: Analysis of typical failure situations in pneumatic cylinders under load. Lubr. Eng. 48, 840–845 (1992)

    Google Scholar 

  9. Chen, J., Qi, X., Liu, B., Wang, D.: Analysis of failure mechanism and stress influence on cylinder. In: Proceedings of 2011 International Conference on Electronic Mechanical Engineering and Information Technology, pp. 3543–3546 (2011)

    Google Scholar 

  10. Jiménez, M., Kurmyshev, E., Castañeda, C.E.: Experimental study of double-acting pneumatic cylinder. Exp. Tech. 44(3), 355–367 (2020). https://doi.org/10.1007/s40799-020-00359-8

    Article  Google Scholar 

  11. Chen, J., Zio, E., Li, J., Zeng, Z., Chong, B.: Accelerated life test for reliability evaluation of pneumatic cylinders. IEEE Access 6, 75062–75075 (2018)

    Article  Google Scholar 

  12. Chen, J., Wu, Q., Bai, G., Ma, J., Wang, Z.: Accelerated life testing design based on wear failure mechanism for pneumatic cylinders. In: 2009 8th International Conference on Reliability, Maintainability and Safety, pp. 1280–1285 (2009)

    Google Scholar 

  13. Chang, M.S., Shin, J.H., Kwon, Y.I., Choi, B.O., Lee, C.S., Kang, B.S.: Reliability estimation of pneumatic cylinders using performance degradation data. Int. J. Precis. Eng. Manuf. 14(12), 2081–2086 (2013). https://doi.org/10.1007/s12541-013-0282-9

    Article  Google Scholar 

  14. Chang, M.S., Kwon, Y.I., Kang, B.S.: Design of reliability qualification test for pneumatic cylinders based on performance degradation data. J. Mech. Sci. Technol. 28(12), 4939–4945 (2014). https://doi.org/10.1007/s12206-014-1115-1

    Article  Google Scholar 

  15. File:Pneumatic actuators.jpg – SolidsWiki. http://www.solidswiki.com/index.php?title=File:Pneumatic_actuators.jpg&mobileaction=toggle_view_desktosp. Accessed 27 Dec 2021

  16. Li, X., Kao, I.: Analytical fault detection and diagnosis (FDD) for pneumatic systems in robotics and manufacturing automation. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2517–2522 (2005)

    Google Scholar 

  17. Alvarez, G.P.: Real-time fault detection and diagnosis using intelligent monitoring and supervision systems. In: Fault Detection, Diagnosis and Prognosis (2020)

    Google Scholar 

  18. Kaškonas, P., Nakutis, Ž.: Leakage diagnostics in pneumatic systems using transient patterns. Presented at the (2006)

    Google Scholar 

  19. Li, X., Zhao, L., Zhou, C., Li, X., Li, H.: Pneumatic ABS modeling and failure mode analysis of electromagnetic and control valves for commercial vehicles. Electronics 9, 318 (2020)

    Article  Google Scholar 

  20. Pneumatic Actuator Fault Diagnosis Based on LS-SVM and SVM. Chinese Journal of Sensors and Actuators (2013). 年11期. http://en.cnki.com.cn/Article_en/CJFDTotal-CGJS201311025.htm. Accessed 10 Aug 2020

  21. Nakutis, Ž, Kaškonas, P.: An approach to pneumatic cylinder on-line conditions monitoring. Mechanika 4(72), 41–47 (2008)

    Google Scholar 

  22. Zhang, K.: Fault Detection and Diagnosis for Multi-Actuator Pneumatic Systems (2011)

    Google Scholar 

  23. Augutis, V., Saunoris, M.: Investigation of high frequency vibrations of pneumatic cylinders. Ultrason. Acoust. Meas. 51, 21–26 (2004)

    Google Scholar 

  24. Mahmoud, H., Vlasic, F., Mazal, P., Jana, M.: Leakage analysis of pneumatic cylinders using acoustic emission. Insight Non-Destr. Test. Cond. Monit. 59(9), 500–505 (2017)

    Article  Google Scholar 

  25. Mahmoud, I.H., Mazal, A.P.: Diagnosis of pneumatic cylinders using acoustic emission methods, p. 78 (2019)

    Google Scholar 

  26. Bui Quy, T., Kim, J.-M.: Leak detection in a gas pipeline using spectral portrait of acoustic emission signals. Measurement 152, 107403 (2020)

    Article  Google Scholar 

  27. Hu, Z., Tariq, S., Zayed, T.: A comprehensive review of acoustic based leak localization method in pressurized pipelines. Mech. Syst. Signal Process. 161, 107994 (2021)

    Article  Google Scholar 

  28. Yu, L., Li, S.Z.: Acoustic emission (AE) based small leak detection of galvanized steel pipe due to loosening of screw thread connection. Appl. Acoust. 120, 85–89 (2017)

    Article  Google Scholar 

  29. Li, S., Song, Y., Zhou, G.: Leak detection of water distribution pipeline subject to failure of socket joint based on acoustic emission and pattern recognition. Measurement 115, 39–44 (2018)

    Article  Google Scholar 

  30. Sharif, M.A., Grosvenor, R.I.: Internal valve leakage detection using an acoustic emission measurement system. Trans. Inst. Meas. Control. 20, 233–242 (1998)

    Article  Google Scholar 

  31. Terchi, A., Au, Y.H.J.: Acoustic emission signal processing. Meas. Control 34, 240–244 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Coanda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coanda, P., Avram, M., Comeaga, D., Gramescu, B., Constantin, V., Nita, E. (2022). A Review of Fault Detection Methods in Smart Pneumatic Systems and Identification of Key Failure Indicators. In: Machado, J., et al. Innovations in Mechatronics Engineering II. icieng 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-09385-2_12

Download citation

Publish with us

Policies and ethics