Skip to main content

Characterizing the Biomechanics of an Endovascular Intervention in Cerebral Aneurysms Using Kirchhoff–Love Shells of Nonuniform Thickness

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine (MICCAI 2021)

Abstract

Rupture of intracranial aneurysms is the most common cause of spontaneous subarachnoid bleeding, related to high morbidity and mortality rates. However, intracranial aneurysms have a higher prevalence than that due to their spontaneous rupture rate, exacerbated by the risks associated with occlusion intervention, which motivates the development of technological tools to support clinical diagnosis and endovascular occlusion intervention planning. In particular, the aneurysm dome is sensitive to applied loads in the contiguous surroundings to the aneurysm neck. Indeed, this region shows high complexity due to the arterial wall nature of the pathology. This work presents preliminary statistical analysis results of a thin shell model, with varying material and geometrical parameters, under a localized load emulating the effect of a microcatheter pressing the neck area. In a selection of 34 cases, we show that dimensionality reduction techniques such as Isomap can help determine non-trivial regions of interest under concentrated loads, leading to more general machine learning classification models for sensitive area identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindgren, A. E., Koivisto, T., Björkman, J., & von und. (2016). Irregular shape of intracranial aneurysm indicates rupture risk irrespective of size in a population-based cohort. Stroke, 47(5), 1219–1226.

    Google Scholar 

  2. Wardlaw, J. M., & White, P. M. (2000). The detection and management of unruptured intracranial aneurysms. Brain, 123(2), 205–221.

    Article  Google Scholar 

  3. Vlak, M. H. M., Algra, A., Brandenburg, R., & Rinkel, G. J. E. (2011). Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: A systematic review and meta-analysis. Lancet Neurology, 10(7), 626–636.

    Article  Google Scholar 

  4. Van Rooij, W. J., & Sluzewski, M. (2006). Procedural morbidity and mortality of elective coil treatment of unruptured intracranial aneurysms. American Journal of Neuroradiology, 27(8), 1678–1680.

    Google Scholar 

  5. Orrù, E., Roccatagliata, L., Cester, G., Causin, F., & Castellan, L. (2013). Complications of endovascular treatment of cerebral aneurysms. European Journal of Radiology, 82(10), 1653–1658.

    Article  Google Scholar 

  6. Lee, J. Y., Seo, J. H., Cho, Y. D., Kang, H. S., & Han, M. H. (2011). Endovascular treatment of wide-neck intracranial aneurysms using a microcatheter protective technique: Results and outcomes in 75 aneurysms. American Journal of Neuroradiology, 32(5), 917–922.

    Article  Google Scholar 

  7. Pierot, L., & Wakhloo, A. K. (2013). Endovascular treatment of intracranial aneurysms: Current status. Stroke, 44(7), 2046–2054.

    Article  Google Scholar 

  8. Cloft, H. J., & Kallmes, D. F. (2002). Cerebral aneurysm perforations complicating therapy with Guglielmi detachable coils: A meta-analysis. American Journal of Neuroradiology, 23(10), 1706–1709.

    Google Scholar 

  9. Robertson, A., & Watton, P. (2013). Mechanobiology of the arterial wall. In Modeling of transport in biological media(pp. 275–347). Elsevier.

    Google Scholar 

  10. Hoskins P., Lawford P., & Doyle B. (2017). Cardiovascular biomechanics. Springer International Publishing.

    Google Scholar 

  11. Humphrey, J., & Canham, P. (2000). Structure, mechanical properties, and mechanics of intracranial saccular aneurysms. Journal of Elasticity, 61(1–3), 49–81.

    Article  MATH  Google Scholar 

  12. Savastano, L., Bhambri, A., Wilkinson, D., & Pandey, A. (2018). Biology of cerebral aneurysm formation, growth, and rupture (pp. 17–32). Elsevier.

    Google Scholar 

  13. Frösen, J. (2014). Smooth muscle cells and the formation, degeneration, and rupture of saccular intracranial aneurysm wall—A review of current pathophysiological knowledge. Translational Stroke Research, 5(3), 347–356.

    Article  Google Scholar 

  14. Tulamo, R., Frösen, J., Hernesniemi, J., & Niemelä, M. (2018). Inflammatory changes in the aneurysm wall: A review. Journal of Neurointerventional Surgery, 10(Suppl 1), i58–i67.

    Article  Google Scholar 

  15. Watton, P., Ventikos, Y., & Holzapfel, G. (2009). Modelling the growth and stabilization of cerebral aneurysms. Mathematical Medicine and Biology, 26(2), 133–164.

    Article  MATH  Google Scholar 

  16. Selimovic, A., Ventikos, Y., & Watton, P. N. (2014). Modelling the evolution of cerebral aneurysms: Biomechanics, mechanobiology and multiscale modelling. Procedia IUTAM, 10, 396–409.

    Article  Google Scholar 

  17. Bazilevs, Y., Hsu, M. C., Zhang, Y., Wang, W., Kvamsdal, T., Hentschel, S., & Isaksen, J. G. (2010). Computational vascular fluid–structure interaction: Methodology and application to cerebral aneurysms. Biomechanics and Modeling in Mechanobiology, 9(4), 481–498.

    Article  Google Scholar 

  18. Isaksen, J. G., Bazilevs, Y., Kvamsdal, T., Zhang, Y., Kaspersen, J. H., Waterloo, K., Romner, B., & Ingebrigtsen, T. (2008). Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke, 39(12), 3172–3178.

    Article  Google Scholar 

  19. Zhou, X., Raghavan, M. L., Harbaugh, R. E., & Lu, J. (2010). Patient-specific wall stress analysis in cerebral aneurysms using inverse shell model. Annals of Biomedical Engineering, 38(2), 478–489.

    Article  Google Scholar 

  20. Lu, J., Hu, S., & Raghavan, M. L. (2013). A shell-based inverse approach of stress analysis in intracranial aneurysms. Annals of Biomedical Engineering, 41(7), 1505–1515.

    Article  Google Scholar 

  21. AneuriskWeb project website, http://ecm2.mathcs.emory.edu/aneuriskweb. Emory University, Department of Math & CS, 2012.

  22. Simo, J., & Fox, D. (1989). On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization. Computer Methods in Applied Mathematics, 72, 267–304.

    Google Scholar 

  23. Millán, D., Rosolen, A., & Arroyo, M. (2013). Nonlinear manifold learning for meshfree finite deformation thin-shell analysis. International Journal for Numerical Methods in Engineering, 93(7), 685–713.

    Article  MathSciNet  MATH  Google Scholar 

  24. Cirak, F., & Long, Q. (2011). Subdivision shells with exact boundary control and non-manifold geometry. International Journal for Numerical Methods in Engineering, 88(9), 897–923.

    Article  MathSciNet  MATH  Google Scholar 

  25. Kadasi, L. M., Dent, W. C., & Malek, A. M. (2013). Cerebral aneurysm wall thickness analysis using intraoperative microscopy: Effect of size and gender on thin translucent regions. Journal of Neurointerventional Surgery, 5(3), 201–206.

    Article  Google Scholar 

  26. CGAL, Computational Geometry Algorithms Library, https://www.cgal.org

  27. Humphrey, J. D., & Canham, P. B. (2000). Structure, mechanical properties, and mechanics of intracranial saccular aneurysms. Journal of Elasticity, 61(1), 49–81.

    Article  MATH  Google Scholar 

  28. Valencia, A., Contente, A., Ignat, M., Mura, J., Bravo, E., Rivera, R., & Sordo, J. (2015). Mechanical test of human cerebral aneurysm specimens obtained from surgical clipping. Journal of Mechanics in Medicine and Biology, 15(05), 1550075.

    Article  Google Scholar 

  29. Scott, S., Ferguson, G. G., & Roach, M. R. (1972). Comparison of the elastic properties of human intracranial arteries and aneurysms. Canadian Journal of Physiology and Pharmacology, 50(4), 328–332.

    Article  Google Scholar 

  30. Laurence, D. W., Homburg, H., Yan, F., Tang, Q., Fung, K. M., Bohnstedt, B. N., Holzapfel, G. A., & Lee, C. H. (2021). A pilot study on biaxial mechanical, collagen microstructural, and morphological characterizations of a resected human intracranial aneurysm tissue. Scientific Reports, 11(1), 1–15.

    Article  Google Scholar 

  31. Závodszky, G., Csippa, B., Paál, G., & Szikora, I. (2020). A novel virtual flow diverter implantation method with realistic deployment mechanics and validated force response. International Journal for Numerical Methods Biomedical Engineering, 36(6), e3340.

    Article  MathSciNet  Google Scholar 

  32. Schroeder, W., Martin, K., & Lorensen, B. (2006). The visualization toolkit. Kitware.

    Google Scholar 

  33. Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Investigation Projects PICTO-2016-0054 UNCuyo-ANPCyT, L028-2019 and M084-2019 SIIP UNCuyo, Argentina. We also thank Ezequiel Petra, MD. for his useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Millán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muzi, N., Camussoni, F., Moyano, L.G., Millán, D. (2022). Characterizing the Biomechanics of an Endovascular Intervention in Cerebral Aneurysms Using Kirchhoff–Love Shells of Nonuniform Thickness. In: Nielsen, P.M., Nash, M.P., Li, X., Miller, K., Wittek, A. (eds) Computational Biomechanics for Medicine. MICCAI 2021. Springer, Cham. https://doi.org/10.1007/978-3-031-09327-2_3

Download citation

Publish with us

Policies and ethics