Skip to main content

Deep Reinforcement Learning for Autonomous Navigation in Robotic Wheelchairs

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (ICPRAI 2022)

Abstract

We propose a novel efficient method for autonomous navigation of nonholonomic mobile robots within complex indoor environments, with application to Electric Powered Wheelchairs (EPW). It is designed and developed using the Deep Reinforcement Learning (RL) framework. Specifically, an end-to-end navigation model is devised utilizing an “off-policy” RL algorithm, which fully exploits information from a realistic setup to perform map-less, collision-free navigation. The model takes as input noisy sensor readings and produces moving commands for the mobile robot, thus, mapping a flow of environmental observations to a continuous space of driving actions, to reach a desired target. The effectiveness and efficiency of the proposed approach is tested through experiments in simulation, in both seen and unseen environments, and is compared to human performance, as well as state-of-the-art motion planners. The results show that our trained planner is not only able to navigate the nonholonomic mobile robot (EPW) through the challenging scenarios with significantly high success rates, but also, it outperforms the baseline methods in a range of performance aspects.

This work is supported by the Assistive Devices for empowering dis-Abled People through robotic Technologies (ADAPT) project. ADAPT is selected for funding by the INTERREG VA France (Channel) England Programme which is co-financed by the European Regional Development Fund (ERDF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: DeepDriving: learning affordance for direct perception in autonomous driving. In: Proceedings of the IEEE International Conference on Computer Vision 2015 Inter(Figure 1), pp. 2722–2730 (2015). https://doi.org/10.1109/ICCV.2015.312

  2. Dieter, F., Wolfram, B., Sebastian, T.: The Dynamic Window Approach to Collision Avoidance, pp. 137–146 (1997). https://www.ri.cmu.edu/pub_files/pub1/fox_dieter_1997_1/fox_dieter_1997_1.pdf

  3. Gao, C., Sands, M., Spletzer, J.: Towards autonomous wheelchair systems in urban environments. In: Howard, A., Iagnemma, K., Kelly, A. (eds.) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol. 62, pp. 13–23. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-13408-1_2

    Chapter  Google Scholar 

  4. Grewal, H.S., Thotappala Jayaprakash, N., Matthews, A., Shrivastav, C., George, K.: PCL-based autonomous wheelchair navigation in unmapped indoor environments. In: 2018 9th IEEE Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON 2018, pp. 291–296 (2018). https://doi.org/10.1109/UEMCON.2018.8796660

  5. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: 35th International Conference on Machine Learning, ICML 2018, vol. 5, pp. 2976–2989 (2018)

    Google Scholar 

  6. Kirby, R.L., Swuste, J., Dupuis, D.J., MacLeod, D.A., Monroe, R.: The Wheelchair Skills Test: a pilot study of a new outcome measure. Arch. Phys. Med. Rehabil. 83(1), 10–18 (2002). https://doi.org/10.1053/apmr.2002.26823

    Article  Google Scholar 

  7. Kretzschmar, H., Spies, M., Sprunk, C., Burgard, W.: Socially compliant mobile robot navigation via inverse reinforcement learning. Int. J. Robot. Res. 35, 1289–1307 (2016). https://doi.org/10.1177/0278364915619772

    Article  Google Scholar 

  8. Li, R., Wei, L., Gu, D., Hu, H., McDonald-Maier, K.D.: Multi-layered map based navigation and interaction for an intelligent wheelchair. In: 2013 IEEE International Conference on Robotics and Biomimetics, ROBIO 2013, pp. 115–120, December 2013. https://doi.org/10.1109/ROBIO.2013.6739445

  9. Mirowski, P., et al.: Learning to navigate in complex environments. In: 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings (2019)

    Google Scholar 

  10. Morales, Y., Kallakuri, N., Shinozawa, K., Miyashita, T., Hagita, N.: Human-comfortable navigation for an autonomous robotic wheelchair. In: IEEE International Conference on Intelligent Robots and Systems, pp. 2737–2743 (2013). https://doi.org/10.1109/IROS.2013.6696743

  11. Pfeiffer, M., Schaeuble, M., Nieto, J., Siegwart, R., Cadena, C.: From perception to decision: a data-driven approach to end-to-end motion planning for autonomous ground robots. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 1527–1533 (2017). https://doi.org/10.1109/ICRA.2017.7989182

  12. Rösmann, C., Feiten, W., Wösch, T., Hoffmann, F., Bertram, T.: Efficient trajectory optimization using a sparse model. In: 2013 European Conference on Mobile Robots, pp. 138–143 (2013). https://doi.org/10.1109/ECMR.2013.6698833

  13. Sinyukov, D., Desmond, R., Dickerman, M., Fleming, J., Schaufeld, J., Padir, T.: Multi-modal control framework for a semi-autonomous wheelchair using modular sensor designs. Intel. Serv. Robot. 7(3), 145–155 (2014). https://doi.org/10.1007/s11370-014-0149-7

    Article  Google Scholar 

  14. Tai, L., Paolo, G., Liu, M.: Virtual-to-real deep reinforcement learning: continuous control of mobile robots for mapless navigation. In: IEEE International Conference on Intelligent Robots and Systems, September 2017. https://doi.org/10.1109/IROS.2017.8202134

  15. Yayan, U., Akar, B., Inan, F., Yazici, A.: Development of indoor navigation software for intelligent wheelchair. In: INISTA 2014 - IEEE International Symposium on Innovations in Intelligent Systems and Applications, Proceedings, pp. 325–329 (2014). https://doi.org/10.1109/INISTA.2014.6873639

  16. Zhou, X., Gao, Y., Guan, L.: Towards goal-directed navigation through combining learning based global and local planners. Sensors (Switzerland) 19(1) (2019). https://doi.org/10.3390/s19010176

  17. Zhu, Y., et al.: Target-driven visual navigation in indoor scenes using deep reinforcement learning. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 3357–3364 (2017). https://doi.org/10.1109/ICRA.2017.7989381

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotirios Chatzidimitriadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chatzidimitriadis, S., Sirlantzis, K. (2022). Deep Reinforcement Learning for Autonomous Navigation in Robotic Wheelchairs. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13364. Springer, Cham. https://doi.org/10.1007/978-3-031-09282-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09282-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09281-7

  • Online ISBN: 978-3-031-09282-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics