Skip to main content

Complex-Shaped 3D Nanoarchitectures for Magnetism and Superconductivity

  • Chapter
  • First Online:
Curvilinear Micromagnetism

Abstract

This chapter gives an overview of the current state of 3D nanofabrication techniques and perspectives of geometry effects in complex-shaped systems. Various nanoarchitectures are considered, including nanostructured junctions and magnetic nanowire lattices with frustration, wireframe and mesh-like 3D objects, and 3D systems with non-trivial topology and chirality. In addition to the theoretical background, a large section is devoted to novel fabrication techniques relying upon 3D optical lithography and 3D nanoprinting by focused electron and ion beam-induced deposition. Emphasis is on 3D nanoarchitectures made from materials exhibiting cooperative ground states such as ferromagnetism and superconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We refer a reader to the Chap. 3 and Sect. 3.2 for details.

References

  1. E. Mengotti, L.J. Heyderman, A.F. Rodríguez, F. Nolting, R.V. Hügli, H.B. Braun, Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice. Nat. Phys. 7(1), 68–74 (2011)

    Google Scholar 

  2. R. Streubel, P. Fischer, F. Kronast, V.V. Kravchuk, D.D. Sheka, Y. Gaididei, O.G. Schmidt, D. Makarov, Magnetism in curved geometries. J. Phys. D: Appl. Phys. 49(36), 363001 (2016)

    Google Scholar 

  3. A. Fernández-Pacheco, R. Streubel, O. Fruchart, R. Hertel, P. Fischer, R.P. Cowburn, Three-dimensional nanomagnetism. Nat. Commun. 8(1), 15756 (2017)

    Article  ADS  Google Scholar 

  4. P. Fischer, D. Sanz-Hernández, R. Streubel, A. Fernández-Pacheco, Launching a new dimension with 3D magnetic nanostructures. APL Mater. 8(1), 010701 (2020)

    Google Scholar 

  5. D.D. Sheka, O.V. Pylypovskyi, P. Landeros, Y. Gaididei, A. Kákay, D. Makarov, Nonlocal chiral symmetry breaking in curvilinear magnetic shells. Commun. Phys. 3(1), 128 (2020)

    Google Scholar 

  6. V.M. Fomin, Self-rolled Micro- and Nano-architectures: Topological and Geometrical Effects (De Gruyter, Berlin/Boston, 2021)

    Google Scholar 

  7. D.D. Sheka, A perspective on curvilinear magnetism. Appl. Phys. Lett. 118(23), 230502 (2021)

    Article  ADS  Google Scholar 

  8. D. Makarov, O.M. Volkov, A. Kakay, O.V. Pylypovskyi, B. Budinska, O.V. Dobrovolskiy, New dimension in magnetism and superconductivity: 3D and curvilinear nanoarchitectures. Adv. Mater. 34, 2101758 (2022)

    Google Scholar 

  9. V.M. Fomin, O. Dobrovolskiy, A perspective on superconductivity in curved 3D nanoarchitectures. Appl. Phys. Lett. 120, 090501 (2022)

    Google Scholar 

  10. F. Porrati, S. Barth, R. Sachser, O.V. Dobrovolskiy, A. Seybert, A.S. Frangakis, M. Huth, Crystalline niobium carbide superconducting nanowires prepared by focused ion beam direct writing. ACS Nano 13(6), 6287–6296 (2019)

    Article  Google Scholar 

  11. R. Córdoba, D. Mailly, R.O. Rezaev, E.I. Smirnova, O.G. Schmidt, V.M. Fomin, U. Zeitler, I. Guillamón, H. Suderow, J.M. De Teresa, Three-dimensional superconducting nanohelices grown by He+-focused-ion-beam direct writing. Nano Lett. 19, 8597 (2019)

    Google Scholar 

  12. E.J. Romans, E.J. Osley, L. Young, P.A. Warburton, W. Li, Three-dimensional nanoscale superconducting quantum interference device pickup loops. Appl. Phys. Lett. 97(22), 222506 (2010)

    Article  ADS  Google Scholar 

  13. Y. Anahory, J. Reiner, L. Embon, D. Halbertal, A. Yakovenko, Y. Myasoedov, M.L. Rappaport, M.E. Huber, E. Zeldov, Three-junction SQUID-on-tip with tunable in-plane and out-of-plane magnetic field sensitivity. Nano Lett. 14(11), 6481–6487 (2014)

    Article  ADS  Google Scholar 

  14. M.J. Martínez-Pérez, D. Gella, B. Müller, V. Morosh, R. Wölbing, J. Sesé, O. Kieler, R. Kleiner, D. Koelle, Three-axis vector nano superconducting quantum interference device. ACS Nano 10(9), 8308–8315 (2016)

    Google Scholar 

  15. S. Lösch, A. Alfonsov, O.V. Dobrovolskiy, R. Keil, V. Engemaier, S. Baunack, G. Li, O.G. Schmidt, D. Bürger, Microwave radiation detection with an ultra-thin free-standing superconducting niobium nanohelix. ACS Nano 13, 2948–2955 (2019)

    Google Scholar 

  16. N.I. Zheludev, The road ahead for metamaterials. Science 328(5978), 582–583 (2010)

    Article  ADS  Google Scholar 

  17. M. Kadic, G.W. Milton, M. Van Hecke, M. Wegener, 3D metamaterials. Nat. Rev. Phys. 1(3), 198–210 (2019)

    Google Scholar 

  18. S. Tomita, H. Kurosawa, T. Ueda, K. Sawada, Metamaterials with magnetism and chirality. J. Phys. D 51(8), 083001 (2018)

    Article  ADS  Google Scholar 

  19. T.R. Albrecht, H. Arora, V. Ayanoor-Vitikkate, J.M. Beaujour, D. Bedau, D. Berman, A.L. Bogdanov, Y.A. Chapuis, J. Cushen, E.E. Dobisz, G. Doerk, H. Gao, M. Grobis, B. Gurney, W. Hanson, O. Hellwig, T. Hirano, P.O. Jubert, D. Kercher, J. Lille, Z. Liu, C.M. Mate, Y. Obukhov, K.C. Patel, K. Rubin, R. Ruiz, M. Schabes, L. Wan, D. Weller, T.W. Wu, E. Yang, Bit-patterned magnetic recording: theory, media fabrication, and recording performance. IEEE Trans. Magn. 51(5), 1–42 (2015)

    Google Scholar 

  20. B. Dieny, I.L. Prejbeanu, K. Garello, P. Gambardella, P. Freitas, R. Lehndorff, W. Raberg, U. Ebels, S.O. Demokritov, J. Akerman, A. Deac, P. Pirro, C. Adelmann, A. Anane, A.V. Chumak, A. Hirohata, S. Mangin, S.O. Valenzuela, M.C. Onbaşlı, M. d’Aquino, G. Prenat, G. Finocchio, L. Lopez-Diaz, R. Chantrell, O. Chubykalo-Fesenko, P. Bortolotti, Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3(8), 446–459 (2020)

    Google Scholar 

  21. G. Gubbiotti (ed.), Three-Dimensional Magnonics: Layered, Micro- and Nanostructures (Jenny Stanford Publishing, Singapore, 2019)

    Google Scholar 

  22. V.V. Kruglyak, S.O. Demokritov, D. Grundler, Magnonics. J. Phys. D 43(26), 264001 (2010)

    Article  ADS  Google Scholar 

  23. A.V. Chumak, V.I. Vasyuchka, A.A. Serga, B. Hillebrands, Magnon spintronics. Nat. Phys. 11(6), 453–461 (2015)

    Article  Google Scholar 

  24. E.Y. Tsymbal, I. Zutic (eds.), Spin wave logic devices, in Spintronics Handbook: Spin Transport and Magnetism, 2nd edn. (CRC Press, Boca Raton, 2019)

    Google Scholar 

  25. V.K. Sakharov, E.N. Beginin, Y.V. Khivintsev, A.V. Sadovnikov, A.I. Stognij, Y.A. Filimonov, S.A. Nikitov, Spin waves in meander shaped YIG film: toward 3D magnonics. Appl. Phys. Lett. 117(2), 022403 (2020)

    Article  ADS  Google Scholar 

  26. F. Heyroth, C. Hauser, P. Trempler, P. Geyer, F. Syrowatka, R. Dreyer, S. Ebbinghaus, G. Woltersdorf, G. Schmidt, Monocrystalline freestanding three-dimensional yttrium-iron-garnet magnon nanoresonators. Phys. Rev. Appl. 12, 054031 (2019)

    Article  ADS  Google Scholar 

  27. O.V. Dobrovolskiy, N.R. Vovk, A.V. Bondarenko, S.A. Bunyaev, S. Lamb-Camarena, N. Zenbaa, R. Sachser, S. Barth, K.Y. Guslienko, A.V. Chumak, M. Huth, G.N. Kakazei, Spin-wave eigenmodes in direct-write 3D nanovolcanoes. Appl. Phys. Lett. 118(13), 132405 (2021)

    Google Scholar 

  28. E.N. Beginin, A.V. Sadovnikov, A.Y. Sharaevskaya, A.I. Stognij, S.A. Nikitov, Spin wave steering in three-dimensional magnonic networks. Appl. Phys. Lett. 112(12), 122404 (2018)

    Article  ADS  Google Scholar 

  29. Q. Wang, M. Kewenig, M. Schneider, R. Verba, F. Kohl, B. Heinz, M. Geilen, M. Mohseni, B. Lägel, F. Ciubotaru, C. Adelmann, C. Dubs, S.D. Cotofana, O.V. Dobrovolskiy, T. Brächer, P. Pirro, A.V. Chumak, A magnonic directional coupler for integrated magnonic half adders. Nat. Electron. 3, 765, (2020)

    Google Scholar 

  30. S. Gliga, A. Kákay, R. Hertel, O.G. Heinonen, Spectral analysis of topological defects in an artificial spin-ice lattice. Phys. Rev. Lett. 110, 117205 (2013)

    Google Scholar 

  31. J. Dubowik, P. Kuświk, M. Matczak, W. Bednarski, F. Stobiecki, P. Aleshkevych, H. Szymczak, M. Kisielewski, J. Kisielewski, Ferromagnetic resonance and resonance modes in kagome lattices: from an open to a closed kagome structure. Phys. Rev. B 93, 224423 (2016)

    Google Scholar 

  32. V.S. Bhat, F. Heimbach, I. Stasinopoulos, D. Grundler, Angular-dependent magnetization dynamics of kagome artificial spin ice incorporating topological defects. Phys. Rev. B 96, 014426 (2017)

    Article  ADS  Google Scholar 

  33. M.B. Jungfleisch, J. Sklenar, J. Ding, J. Park, J.E. Pearson, V. Novosad, P. Schiffer, A. Hoffmann, High-frequency dynamics modulated by collective magnetization reversal in artificial spin ice. Phys. Rev. Appl. 8, 064026 (2017)

    Article  ADS  Google Scholar 

  34. S. Koraltan, M. Pancaldi, N. Leo, C. Abert, C. Vogler, K. Hofhuis, F. Slanovc, F. Bruckner, P. Heistracher, M. Menniti, P. Vavassori, D. Suess, Dependence of energy barrier reduction on collective excitations in square artificial spin ice: a comprehensive comparison of simulation techniques. Phys. Rev. B 102, 064410 (2020)

    Article  ADS  Google Scholar 

  35. S. Koraltan, F. Slanovc, F. Bruckner, C. Nisoli, O. Dobrovolsky, A. Chumak, C. Abert, D. Suess, Tension-free Dirac strings and unbound magnetic charges in 3D artificial spin ice lattice

    Google Scholar 

  36. S. Koraltan, F. Slanovc, F. Bruckner, C. Nisoli, A.V. Chumak, O.V. Dobrovolskiy, C. Abert, D. Suess, Tension-free Dirac strings and steered magnetic charges in 3D artificial spin ice. npj Comput. Mater. 7(1), 125 (2021)

    Google Scholar 

  37. A. May, M. Hunt, A. Van Den Berg, A. Hejazi, S. Ladak, Realisation of a frustrated 3D magnetic nanowire lattice. Commun. Phys. 2, 13 (2019)

    Google Scholar 

  38. Y. Gaididei, V.P. Kravchuk, D.D. Sheka, Curvature effects in thin magnetic shells. Phys. Rev. Lett. 112, 257203 (2014)

    Article  ADS  Google Scholar 

  39. D.D. Sheka, V.P. Kravchuk, Y. Gaididei, Curvature effects in statics and dynamics of low dimensional magnets. J. Phys. A: Math. Theor. 48(12), 125202 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. G. Carbou, Thin layers in micromagnetism. Math. Models Methods Appl. Sci. 11, 1529–1546 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. R.V. Kohn, V.V. Slastikov, Another thin-film limit of micromagnetics. Arch. Ration. Mech. Anal. 178(2), 227–245 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. E.J. Smith, D. Makarov, O.G. Schmidt, Polymer delamination: towards unique three-dimensional microstructures. Soft Matter 7(24), 11309 (2011)

    Article  ADS  Google Scholar 

  43. D.K. Ball, S. Günther, M. Fritzsche, K. Lenz, G. Varvaro, S. Laureti, D. Makarov, A. Mücklich, S. Facsko, M. Albrecht, J. Fassbender, Out-of-plane magnetized cone-shaped magnetic nanoshells. J. Phys. D: Appl. Phys. 50(11), 115004 (2017)

    Google Scholar 

  44. O.V. Pylypovskyi, D.D. Sheka, V.P. Kravchuk, K.V. Yershov, D. Makarov, Y. Gaididei, Rashba torque driven domain wall motion in magnetic helices. Sci. Rep. 6(1), 23316 (2016)

    Google Scholar 

  45. E.Y. Vedmedenko, R.K. Kawakami, D. Sheka, P. Gambardella, A. Kirilyuk, A. Hirohata, C. Binek, O.A. Chubykalo-Fesenko, S. Sanvito, B. Kirby, J. Grollier, K. Everschor-Sitte, T. Kampfrath, C.Y. You, A. Berger, The 2020 magnetism roadmap. J. Phys. D: Appl. Phys. 53(45), 453001 (2020)

    Google Scholar 

  46. O.V. Pylypovskyi, D. Makarov, V.P. Kravchuk, Y. Gaididei, A. Saxena, D.D. Sheka, Chiral skyrmion and skyrmionium states engineered by the gradient of curvature. Phys. Rev. Appl. 10(6), 064057 (2018)

    Article  ADS  Google Scholar 

  47. A.W. Teixeira, S. Castillo-Sepúlveda, S. Vojkovic, J.M. Fonseca, D. Altbir, Á. Núñez, V. Carvalho-Santos, Analysis on the stability of in-surface magnetic configurations in toroidal nanoshells. J. Magn. Magn. Mater. 478, 253–259 (2019)

    Google Scholar 

  48. J.A. Otálora, M. Yan, H. Schultheiss, R. Hertel, A. Kákay, Curvature-induced asymmetric spin-wave dispersion. Phys. Rev. Lett. 117, 227203 (2016)

    Google Scholar 

  49. J.A. Otálora, M. Yan, H. Schultheiss, R. Hertel, A. Kákay, Asymmetric spin-wave dispersion in ferromagnetic nanotubes induced by surface curvature. Phys. Rev. B 95(18), 184415 (2017)

    Google Scholar 

  50. O.M. Volkov, A. Kákay, F. Kronast, I. Mönch, M.A. Mawass, J. Fassbender, D. Makarov, Experimental observation of exchange-driven chiral effects in curvilinear magnetism. Phys. Rev. Lett. 123, 077201 (2019)

    Google Scholar 

  51. O.M. Volkov, F. Kronast, I. Mönch, M.A. Mawass, A. Kákay, J. Fassbender, D. Makarov, Experimental and theoretical study of curvature effects in parabolic nanostripes. Phys. Status Solidi - Rapid Res. Lett. 13(1), 1800309 (2019)

    Google Scholar 

  52. L. Körber, M. Zimmermann, S. Wintz, M. Kronseder, D. Bougeard, F. Dirnberger, M. Weigand, J. Raabe, J.A. Otálora, H. Schultheiss, E. Josten, J. Lindner, I. Kézsmárki, C.H. Back, A. Kákay, Symmetry and curvature effects on spin waves in vortex-state hexagonal nanotubes. Phys. Rev. B. 104, 184429 (2021)

    Google Scholar 

  53. W. Hu, G.Z. Lum, M. Mastrangeli, M. Sitti, Small-scale soft-bodied robot with multimodal locomotion. Nature 554(7690), 81–85 (2018)

    Article  ADS  Google Scholar 

  54. Y. Kim, H. Yuk, R. Zhao, S.A. Chester, X. Zhao, Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558(7709), 274–279 (2018)

    Article  ADS  Google Scholar 

  55. O.V. Pylypovskyi, D.Y. Kononenko, K.V. Yershov, U.K. Rößler, A.V. Tomilo, J. Fassbender, J. van den Brink, D. Makarov, D.D. Sheka, Curvilinear one-dimensional antiferromagnets. Nano Lett. 20, 8157–8162 (2020)

    Google Scholar 

  56. O.V. Pylypovskyi, Y.A. Borysenko, J. Fassbender, D.D. Sheka, D. Makarov, Curvature-driven homogeneous Dzyaloshinskii–Moriya interaction and emergent weak ferromagnetism in anisotropic antiferromagnetic spin chains. Appl. Phys. Lett. 118(18), 182405 (2021)

    Article  ADS  Google Scholar 

  57. A. Fernandez-Pacheco, L. Skoric, J. De Teresa, J. Pablo-Navarro, M. Huth, O.V. Dobrovolskiy, Writing 3D nanomagnets using focused electron beams. Materials 13, 3774 (2020)

    Google Scholar 

  58. H. Plank, R. Winkler, C. Schwalb, J. Hütner, J.D. Fowlkes, P. Rack, I. Utke, M. Huth, Focused electron beam-based 3D nanoprinting for scanning probe microscopy: a review. Micromachines 11, 48 (2020)

    Google Scholar 

  59. K.V. Yershov, V.P. Kravchuk, D.D. Sheka, Y. Gaididei, Curvature-induced domain wall pinning. Phys. Rev. B 92, 104412 (2015)

    Article  ADS  Google Scholar 

  60. D.D. Sheka, V.P. Kravchuk, K.V. Yershov, Y. Gaididei, Torsion-induced effects in magnetic nanowires. Phys. Rev. B 92, 054417 (2015)

    Article  ADS  Google Scholar 

  61. D. Sanz-Hernández, A. Hierro-Rodriguez, C. Donnelly, J. Pablo-Navarro, A. Sorrentino, E. Pereiro, C. Magén, S. McVitie, J.M. De Teresa, S. Ferrer, P. Fischer, A. Fernández-Pacheco, Artificial double-helix for geometrical control of magnetic chirality. ACS Nano 14, 8084–8092 (2020)

    Google Scholar 

  62. L. Skoric, C. Donnelly, A. Hierro-Rodriguez, M. A. Cascales Sandoval, S. Ruiz-Gómez, M. Foerster, M.A. Niño, R. Belkhou, C. Abert, D. Suess, A. Fernández-Pacheco, Domain wall automotion in three-dimensional magnetic helical interconnectors. ACS Nano (2022)

    Google Scholar 

  63. O.V. Pylypovskyi, V.P. Kravchuk, D.D. Sheka, D. Makarov, O.G. Schmidt, Y. Gaididei, Coupling of chiralities in spin and physical spaces: the Möbius ring as a case study. Phys. Rev. Lett. 114(19), 197204 (2015)

    Article  ADS  Google Scholar 

  64. L. Skoric, D. Sanz-Hernández, F. Meng, C. Donnelly, S. Merino-Aceituno, A. Fernández-Pacheco, Layer-by-layer growth of complex-shaped three-dimensional nanostructures with focused electron beams. Nano Lett. 20(1), 184–191 (2020)

    Google Scholar 

  65. J. Askey, M. Hunt, W. Langbein, S. Ladak, Use of two-photon lithography with a negative resist and processing to realise cylindrical magnetic nanowires. Nanomaterials 10, 429 (2020)

    Article  Google Scholar 

  66. A. May, M. Saccone, A. van den Berg, J. Askey, M. Hunt, S. Ladak, Magnetic charge propagation upon a 3D artificial spin-ice. Nat. Commun. 12(1), 3217 (2021)

    Google Scholar 

  67. G.W. Chern, C. Reichhardt, C. Nisoli, Realizing three-dimensional artificial spin ice by stacking planar nano-arrays. Appl. Phys. Lett. 104(1), 013101 (2014)

    Article  ADS  Google Scholar 

  68. R. Cheenikundil, R. Hertel, Switchable magnetic frustration in buckyball nanoarchitectures. Appl. Phys. Lett. 118(21), 212403 (2021)

    Article  ADS  Google Scholar 

  69. R. Hertel, S. Christophersen, S. Börm, Large-scale magnetostatic field calculation in finite element micromagnetics with \(\mathscr {H}^2\)-matrices. J. Magn. Magn. Mater. 477, 118–123 (2019)

    Google Scholar 

  70. F. Garcia-Sanchez, A. Kákay, R. Hertel, P. Asselin, Depinning of transverse domain walls from notches in magnetostatically coupled nanostrips. Appl. Phys. Express 4(3), 033001 (2011)

    Google Scholar 

  71. A. Himeno, T. Okuno, S. Kasai, T. Ono, S. Nasu, K. Mibu, T. Shinjo, Propagation of a magnetic domain wall in magnetic wires with asymmetric notches. J. Appl. Phys. 97(6), 066101 (2005)

    Article  ADS  Google Scholar 

  72. H.Y. Yuan, X.R. Wang, Boosting domain wall propagation by notches. Phys. Rev. B 92(5), 054419 (2015)

    Article  ADS  Google Scholar 

  73. M. Kläui, C.A.F. Vaz, J. Rothman, J.A.C. Bland, W. Wernsdorfer, G. Faini, E. Cambril, Domain wall pinning in narrow ferromagnetic ring structures probed by magnetoresistance measurements. Phys. Rev. Lett. 90(9), 097202 (2003)

    Article  ADS  Google Scholar 

  74. M. Kläui, Head-to-head domain walls in magnetic nanostructures. J. Phys.: Condens. Matter 20(31), 313001 (2008)

    Google Scholar 

  75. M. Kläui, C.A.F. Vaz, J.A.C. Bland, W. Wernsdorfer, G. Faini, E. Cambril, L.J. Heyderman, F. Nolting, U. Rüdiger, Controlled and reproducible domain wall displacement by current pulses injected into ferromagnetic ring structures. Phys. Rev. Lett. 94, 106601 (2005)

    Google Scholar 

  76. M.A. Mawass, K. Richter, A. Bisig, R.M. Reeve, B. Krüger, M. Weigand, H. Stoll, A. Krone, F. Kronast, G. Schütz, M. Kläui, Switching by domain-wall automotion in asymmetric ferromagnetic rings. Phys. Rev. Appl. 7(4), 044009 (2017)

    Google Scholar 

  77. T. Okuno, K. Shigeto, T. Ono, K. Mibu, T. Shinjo, MFM study of magnetic vortex cores in circular permalloy dots: behavior in external field. J. Magn. Magn. Mater. 240(1–3), 1–6 (2002)

    Google Scholar 

  78. D.A. Allwood, G. Xiong, C.C. Faulkner, D. Atkinson, D. Petit, R.P. Cowburn, Magnetic domain-wall logic. Science 309(5741), 1688–1692 (2005)

    Article  ADS  Google Scholar 

  79. W.T. Lu, F.Y. Wu, Ising model on nonorientable surfaces: exact solution for the Möbius strip and the Klein bottle. Phys. Rev. E 63, 026107 (2001)

    Article  ADS  Google Scholar 

  80. K. Kaneda, Y. Okabe, Finite-size scaling for the Ising model on the Möbius strip and the Klein bottle. Phys. Rev. Lett. 86(10), 2134–2137 (2001)

    Article  ADS  Google Scholar 

  81. O.A. Vasilyev, A. Maciołek, S. Dietrich, Criticality senses topology. Europhys. Lett. 128(2), 20002 (2019)

    Google Scholar 

  82. D.K. Ball, K. Lenz, M. Fritzsche, G. Varvaro, S. Günther, P. Krone, D. Makarov, A. Mücklich, S. Facsko, J. Fassbender, M. Albrecht, Magnetic properties of granular CoCrPt:SiO\(_2\) thin films deposited on GaSb nanocones. Nanotechnology 25(8), 085703 (2014)

    Google Scholar 

  83. D. Makarov, L. Baraban, I.L. Guhr, J. Boneberg, H. Schift, J. Gobrecht, G. Schatz, P. Leiderer, M. Albrecht, Arrays of magnetic nanoindentations with perpendicular anisotropy. Appl. Phys. Lett. 90(9), 093117 (2007)

    Article  ADS  Google Scholar 

  84. G. Di Fratta, C.B. Muratov, F.N. Rybakov, V.V. Slastikov, Variational principles of micromagnetics revisited. SIAM J. Math. anal. 52, 3580 (2020)

    Google Scholar 

  85. G. Di Fratta, Micromagnetics of curved thin films. Z. Angew. Math. Phys. 71(4) (2020)

    Google Scholar 

  86. K.V. Yershov, V.P. Kravchuk, D.D. Sheka, Y. Gaididei, Curvature and torsion effects in spin-current driven domain wall motion. Phys. Rev. B 93, 094418 (2016)

    Google Scholar 

  87. A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica (Taylor & Francis Inc, Boca Raton, 2006)

    Google Scholar 

  88. Y. Gaididei, A. Goussev, V.P. Kravchuk, O.V. Pylypovskyi, J.M. Robbins, D. Sheka, V. Slastikov, S. Vasylkevych, Magnetization in narrow ribbons: curvature effects. J. Phys. A: Math. Theor. 50(38), 385401 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. V.L. Carvalho-Santos, R.G. Elias, D. Altbir, J.M. Fonseca, Stability of skyrmions on curved surfaces in the presence of a magnetic field. J. Magn. Magn. Mater. 391, 179–183 (2015)

    Article  ADS  Google Scholar 

  90. R. Dandoloff, A. Saxena, Heisenberg spins on a bilayer connected by a neck and other geometries with a characteristic length scale. J. Phys. A: Math. Theor. 44(4), 045203 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. A. Arrott, B. Heinrich, D. Bloomberg, Micromagnetics of magnetization processes in toroidal geometries. IEEE Trans. Magn. 10(3), 950–953 (1974)

    Article  ADS  Google Scholar 

  92. A. Aharoni, Introduction to the Theory of Ferromagnetism (Oxford University Press, Oxford, 1996)

    Google Scholar 

  93. A.S. Arrott, R. Hertel, Mode anticipation fields for symmetry breaking. IEEE Trans. Magn. 43(6), 2911–2913 (2007)

    Article  ADS  Google Scholar 

  94. S. Vojkovic, V. Carvalho-Santos, J. Fonseca, A. Nunez, Vortex-antivortex pairs induced by curvature in toroidal nanomagnets. J. Appl. Phys. 121(11), 113906 (2017)

    Google Scholar 

  95. V.P. Kravchuk, U.K. Rößler, O.M. Volkov, D.D. Sheka, J. van den Brink, D. Makarov, H. Fuchs, H. Fangohr, Y. Gaididei, Topologically stable magnetization states on a spherical shell: curvature-stabilized skyrmions. Phys. Rev. B 94, 144402 (2016)

    Google Scholar 

  96. N. Papanicolaou, P.N. Spathis, Semitopological solitons in planar ferromagnets. Nonlinearity 12(2), 285–302 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. S. Komineas, N. Papanicolaou, Dynamics of vortex-antivortex pairs in ferromagnets, in Electromagnetic, Magnetostatic, and Exchange-Interaction Vortices in Confined Magnetic Structures, ed. by E. Kamenetskii (Research Signpost, 2008)

    Google Scholar 

  98. V.P. Kravchuk, D.D. Sheka, Y.B. Gaididei, Equilibrium magnetisation structures in ferromagnetic nanorings. J. Magn. Magn. Mater. 310(1), 116–125 (2007)

    Article  ADS  Google Scholar 

  99. V.L. Carvalho-Santos, A.R. Moura, W.A. Moura-Melo, A.R. Pereira, Topological spin excitations on a rigid torus. Phys. Rev. B 77(13), 134450 (2008)

    Google Scholar 

  100. V.L. Carvalho-Santos, W.A. Moura-Melo, A.R. Pereira, Miniaturization of vortex-comprising system using ferromagnetic nanotori. J. Appl. Phys. 108(9), 094310 (2010)

    Google Scholar 

  101. S. Vojkovic, A.S. Nunez, D. Altbir, V.L. Carvalho-Santos, Magnetization ground state and reversal modes of magnetic nanotori. J. Appl. Phys. 120(3), 033901 (2016)

    Google Scholar 

  102. D. Mancilla-Almonacid, M.A. Castro, J.M. Fonseca, D. Altbir, S. Allende, V.L. Carvalho-Santos, Magnetic ground states for bent nanotubes. J. Magn. Magn. Mater. 166754 (2020)

    Google Scholar 

  103. S. Castillo-Sepúlveda, R. Cacilhas, V.L. Carvalho-Santos, R.M. Corona, D. Altbir, Magnetic hopfions in toroidal nanostructures driven by an Oersted magnetic field. Phys. Rev. B 104(18) (2021)

    Google Scholar 

  104. M. Yoneya, K. Kuboki, M. Hayashi, Domain-wall structure of a classical Heisenberg ferromagnet on a Möbius strip. Phys. Rev. B 78(6), 064419 (2008)

    Article  ADS  Google Scholar 

  105. A. Saxena, R. Dandoloff, T. Lookman, Deformable curved magnetic surfaces. Phys. A 261(1–2), 13–25 (1998)

    Article  Google Scholar 

  106. P.S. Vilas-Boas, R.G. Elias, D. Altbir, J.M. Fonseca, V.L. Carvalho-Santos, Topological magnetic solitons on a paraboloidal shell. Phys. Lett. A 379(379), 47–53 (2015)

    Google Scholar 

  107. S. Rohart, A. Thiaville, Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction. Phys. Rev. B 88(18), 184422 (2013)

    Article  ADS  Google Scholar 

  108. L. Belo, N. Oliveira-Neto, W. Moura-Melo, A. Pereira, E. Ercolessi, Heisenberg model on a space with negative curvature: topological spin textures on the pseudosphere. Phys. Lett. A 365(5–6), 463–468 (2007)

    Google Scholar 

  109. V.L. Carvalho-Santos, R. Dandoloff, Coupling between magnetic field and curvature in Heisenberg spins on surfaces with rotational symmetry. Phys. Lett. A 376(46), 3551–3554 (2012)

    Article  ADS  Google Scholar 

  110. V. Carvalho-Santos, F. Apolonio, N. Oliveira-Neto, On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry. Phys. Lett. A 377(18), 1308–1316 (2013)

    Google Scholar 

  111. D. Cortes-Ortuno, P. Landeros, Influence of the Dzyaloshinskii-Moriya interaction on the spin-wave spectra of thin films. J. Phys. Condens. Matter 25(15), 156001 (2013)

    Article  ADS  Google Scholar 

  112. M.A. Popov, I.V. Zavislyak, Modeling of magnetostatic surface oscillations in elliptic nanotubes. Ukr. J. Phys. 53(7), 702–707 (2008)

    Google Scholar 

  113. A. Kozhanov, M. Popov, I. Zavislyak, D. Ouellette, D.W. Lee, S.X. Wang, M. Rodwell, S.J. Allen, Spin wave modes in ferromagnetic tubes. J. Appl. Phys. 111(1), 013905 (2012)

    Article  ADS  Google Scholar 

  114. Z. Guo, Z. Gong, H. Dong, C. Sun, Möbius graphene strip as a topological insulator. Phys. Rev. B 80(19) (2009)

    Google Scholar 

  115. C.W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, X. Zhang, Optical Möbius symmetry in metamaterials. Phys. Rev. Lett. 105(23), 235501 (2010)

    Article  ADS  Google Scholar 

  116. V.M. Fomin, S. Kiravittaya, O.G. Schmidt, Electron localization in inhomogeneous Möbius rings. Phys. Rev. B 86(19) (2012)

    Google Scholar 

  117. M. Saha, S.K. Maiti, Magnetic response of non-interacting and interacting electrons in a Möbius strip. Superlattices Microstruct. 100, 1081–1093 (2016)

    Article  ADS  Google Scholar 

  118. J. Jung, O. Keller, Electrodynamics of a mesoscopic Möbius quantum wire. J. Opt. Soc. Am. B 37(10), 3005–3015 (2020)

    Google Scholar 

  119. V.P. Kravchuk, D.D. Sheka, A. Kákay, O.M. Volkov, U.K. Rößler, J. van den Brink, D. Makarov, Y. Gaididei, Multiplet of skyrmion states on a curvilinear defect: reconfigurable skyrmion lattices. Phys. Rev. Lett. 120(6), 067201 (2018)

    Google Scholar 

  120. K.V. Yershov, V.P. Kravchuk, D.D. Sheka, J. van den Brink, A. Saxena, Domain wall diode based on functionally graded Dzyaloshinskii–Moriya interaction. Appl. Phys. Lett. 116(22), 222406 (2020)

    Google Scholar 

  121. V.L. Carvalho-Santos, M.A. Castro, D. Salazar-Aravena, D. Laroze, R.M. Corona, S. Allende, D. Altbir, Skyrmion propagation along curved racetracks. Appl. Phys. Lett. 118(17), 172407 (2021)

    Google Scholar 

  122. K.V. Yershov, A. Kakay, V.P. Kravchuk, Curvature induced drift and deformation of magnetic skyrmions: comparison of ferro- and antiferromagnetic cases. Phys. Rev. B. 105, 054425 (2022)

    Google Scholar 

  123. A. Korniienko, A. Kákay, D.D. Sheka, V.P. Kravchuk, Effect of curvature on the eigenstates of magnetic skyrmions. Phys. Rev. B 102, 014432 (2020)

    Google Scholar 

  124. X. Huo, Y. Liu, The stability of a skyrmion in a nanotube. New J. Phys. 21(9), 093024 (2019)

    Google Scholar 

  125. Y. Liu, N. Cai, X. Yu, S. Xuan, Nucleation and stability of skyrmions in three-dimensional chiral nanostructures. Sci. Rep. 10(1), 21717 (2020)

    Google Scholar 

  126. J. Yang, J. Kim, C. Abert, D. Suess, S.K. Kim, Stability of skyrmion formation and its abnormal dynamic modes in magnetic nanotubes. Phys. Rev. B 102(9), 094439 (2020)

    Article  ADS  Google Scholar 

  127. X. Wang, X.S. Wang, C. Wang, H. Yang, Y. Cao, P. Yan, Current-induced skyrmion motion on magnetic nanotubes. J. Phys. D: Appl. Phys. 52(22), 225001 (2019)

    Google Scholar 

  128. M. Xin, Y. Liu, Skyrmion hall effect in a nanotube driven by a rotating magnetic field. J. Magn. Magn. Mater. 536, 168142 (2021)

    Article  Google Scholar 

  129. K. Robbie, J.C. Sit, M.J. Brett, Advanced techniques for glancing angle deposition. J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998)

    Article  Google Scholar 

  130. K. Robbie, M.J. Brett, Sculptured thin films and glancing angle deposition: growth mechanics and applications. J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997)

    Article  Google Scholar 

  131. B. Dick, M.J. Brett, T.J. Smy, M.R. Freeman, M. Malac, R.F. Egerton, Periodic magnetic microstructures by glancing angle deposition. J. Vac. Sci. Technol. A 18(4), 1838–1844 (2000)

    Article  Google Scholar 

  132. Y. He, J. Fu, Y. Zhang, Y. Zhao, L. Zhang, A. Xia, J. Cai, Multilayered Si/Ni nanosprings and their magnetic properties. Small 3(1), 153–160 (2007)

    Article  Google Scholar 

  133. C. Phatak, Y. Liu, E.B. Gulsoy, D. Schmidt, E. Franke-Schubert, A. Petford-Long, Visualization of the magnetic structure of sculpted three-dimensional cobalt nanospirals. Nano Lett. 14(2), 759–764 (2014)

    Google Scholar 

  134. S. Eslami, J.G. Gibbs, Y. Rechkemmer, J. van Slageren, M. Alarcón-Correa, T.C. Lee, A.G. Mark, G.L.J.A. Rikken, P. Fischer, Chiral nanomagnets. ACS Photonics 1(11), 1231–1236 (2014)

    Google Scholar 

  135. Y.P. Zhao, D.X. Ye, P.I. Wang, G.C. Wang, T.M. Lu, Fabrication of Si nanocolumns and Si square spirals on self-assembled monolayer colloid substrates. Int. J. Nanosci. 01(01), 87–97 (2002)

    Article  Google Scholar 

  136. T. Karabacak, J.P. Singh, Y.P. Zhao, G.C. Wang, T.M. Lu, Scaling during shadowing growth of isolated nanocolumns. Phys. Rev. B 68, 125408 (2003)

    Article  ADS  Google Scholar 

  137. R.D. McMichael, C.G. Lee, J.E. Bonevich, P.J. Chen, W. Miller, W.F. Egelhoff, Strong anisotropy in thin magnetic films deposited on obliquely sputtered Ta underlayers. J. Appl. Phys. 88(9), 5296–5299 (2000)

    Article  ADS  Google Scholar 

  138. J. Lintymer, J. Gavoille, N. Martin, J. Takadoum, Glancing angle deposition to modify microstructure and properties of sputter deposited chromium thin films. Surf. Coat. Technol. 174–175, 316–323 (2003)

    Google Scholar 

  139. J.G. Fan, Y.P. Zhao, Direct deposition of aligned nanorod array onto cylindrical objects. J. Vac. Sci. Technol. B 23(3), 947–953 (2005)

    Article  Google Scholar 

  140. S.V. Kesapragada, D. Gall, Two-component nanopillar arrays grown by glancing angle deposition. Thin Solid Films 494(1), 234–239 (2006)

    Article  ADS  Google Scholar 

  141. M. Albrecht, G. Hu, I.L. Guhr, T.C. Ulbrich, J. Boneberg, P. Leiderer, G. Schatz, Magnetic multilayers on nanospheres. Nat. Mater. 4(3), 203–206 (2005)

    Article  ADS  Google Scholar 

  142. R. Streubel, V.P. Kravchuk, D.D. Sheka, D. Makarov, F. Kronast, O.G. Schmidt, Y. Gaididei, Equilibrium magnetic states in individual hemispherical permalloy caps. Appl. Phys. Lett. 101(13), 132419 (2012)

    Article  ADS  Google Scholar 

  143. C. Donnelly, M. Guizar-Sicairos, V. Scagnoli, M. Holler, T. Huthwelker, A. Menzel, I. Vartiainen, E. Müller, E. Kirk, S. Gliga, J. Raabe, L.J. Heyderman, Element-specific x-ray phase tomography of 3D structures at the nanoscale. Phys. Rev. Lett. 114, 115501 (2015)

    Google Scholar 

  144. S. Tottori, L. Zhang, F. Qiu, K.K. Krawczyk, A. Franco-Obregón, B.J. Nelson, Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24(6), 811–816 (2012)

    Google Scholar 

  145. O.G. Schmidt, K. Eberl, Thin solid films roll up into nanotubes. Nature 410(6825), 168–168 (2001)

    Article  ADS  Google Scholar 

  146. E.J. Smith, D. Makarov, S. Sanchez, V.M. Fomin, O.G. Schmidt, Magnetic microhelix coil structures. Phys. Rev. Lett. 107, 097204 (2011)

    Article  ADS  Google Scholar 

  147. F. Gabler, D.D. Karnaushenko, D. Karnaushenko, O.G. Schmidt, Magnetic origami creates high performance micro devices. Nat. Commun. 10(1), 3013 (2019)

    Article  ADS  Google Scholar 

  148. L.G. Vivas, J. Escrig, D.G. Trabada, G.A. Badini-Confalonieri, M. Vázquez, Magnetic anisotropy in ordered textured Co nanowires. Appl. Phys. Lett. 100(25), 252405 (2012)

    Google Scholar 

  149. R. Zierold, Z. Wu, J. Biskupek, U. Kaiser, J. Bachmann, C.E. Krill, K. Nielsch, Magnetic, multilayered nanotubes of low aspect ratios for liquid suspensions. Adv. Funct. Mater. 21(2), 226–232 (2011)

    Google Scholar 

  150. T. Ozel, G.R. Bourret, C.A. Mirkin, Coaxial lithography. Nat. Nanotechnol. 10(4), 319–324 (2015)

    Google Scholar 

  151. J. Lee, J. Wu, H. Liu, J. Cho, M. Cho, B. An, J. Min, S. Noh, Y. Kim, Iron-gold barcode nanowires. Angew. Chem. Int. Ed. 46(20), 3663–3667 (2007)

    Article  Google Scholar 

  152. R. Glass, M. Arnold, J. Blümmel, A. Küller, M. Möller, J.P. Spatz, Micro-nanostructured interfaces fabricated by the use of inorganic block copolymer micellar monolayers as negative resist for electron-beam lithography. Adv. Funct. Mater. 13(7), 569–575 (2003)

    Google Scholar 

  153. H.B. Sun, S. Matsuo, H. Misawa, Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl. Phys. Lett. 74(6), 786–788 (1999)

    Article  ADS  Google Scholar 

  154. R.A. Borisov, G.N. Dorojkina, N.I. Koroteev, V.M. Kozenkov, S.A. Magnitskii, D.V. Malakhov, A.V. Tarasishin, A.M. Zheltikov, Fabrication of three-dimensional periodic microstructures by means of two-photon polymerization. Appl. Phys. B 67(6), 765–767 (1998)

    Google Scholar 

  155. K.S. Worthington, J.R. Thompson, B.J. Green, S.J. Bunn, E.E. Kaalberg, R.M. Johnston, L.A. Wiley, R.F. Mullins, E.M. Stone, C.A. Guymon, B. Tucker, Two-photon polymerization of high-resolution 3D, biodegradable photoreceptor cell scaffolds. Investig. Ophthalmol. Vis. Sci. 58(8), 3390–3390 (2017)

    Google Scholar 

  156. K. Worthington, J. Thompson, A. Shrestha, C. Jiao, E. Kaalberg, B. Green, L. Wiley, C.A. Guymon, S. Russell, E. Sohn et al., Two-photon polymerized poly (caprolactone) as a high-resolution, 3D-printed cell delivery scaffold. Mol. Ther. 26(5), 427–427 (2018)

    Google Scholar 

  157. G. Kumi, C.O. Yanez, K.D. Belfield, J.T. Fourkas, High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios. Lab Chip 10, 1057–1060 (2010)

    Article  Google Scholar 

  158. J.M. Shaw, J.D. Gelorme, N.C. LaBianca, W.E. Conley, S.J. Holmes, Negative photoresists for optical lithography. IBM J. Res. Dev. 41(1–2), 81–94 (1997)

    Article  Google Scholar 

  159. J. Fischer, M. Wegener, Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev. 7(1), 22–44 (2013)

    Article  ADS  Google Scholar 

  160. G. Williams, M. Hunt, B. Boehm, A. May, M. Taverne, D. Ho, S. Giblin, D. Read, J. Rarity, R. Allenspach, S. Ladak, Two-photon lithography for 3D magnetic nanostructure fabrication. Nano Res. 11(2), 845–854 (2018)

    Article  Google Scholar 

  161. H.Z. Cao, M.L. Zheng, X.Z. Dong, F. Jin, Z.S. Zhao, X.M. Duan, Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing. Appl. Phys. Lett. 102(20), 201108 (2013)

    Google Scholar 

  162. Microchemicals. Development of photoresists, http://www.microchemicals.com

  163. S. Sahoo, S. Mondal, G. Williams, A. May, S. Ladak, A. Barman, Ultrafast magnetization dynamics in a nanoscale three-dimensional cobalt tetrapod structure. Nanoscale 10(21), 9981–9986 (2018)

    Article  Google Scholar 

  164. S.T. Bramwell, M.J.P. Gingras, Spin ice state in frustrated magnetic pyrochlore materials. Science 294(5546), 1495–1501 (2001)

    Article  ADS  Google Scholar 

  165. L.A. Pustil’nik, Solar flare phenomena as phase transition caused by frustration of current percolation. Astrophys. Space Sci. 264(1), 171–182 (1998)

    Article  ADS  MATH  Google Scholar 

  166. D.U. Ferreiro, E.A. Komives, P.G. Wolynes, Frustration in biomolecules. Q. Rev. Biophys. 47, 285–363 (2014)

    Article  Google Scholar 

  167. L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57(12), 2680–2684 (1935)

    Google Scholar 

  168. A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, B.S. Shastry, Zero-point entropy in ‘spin ice’. Nature 399(6734), 333–335 (1999)

    Article  ADS  Google Scholar 

  169. R.F. Wang, C. Nisoli, R.S. Freitas, J. Li, W. McConville, B.J. Cooley, M.S. Lund, N. Samarth, C. Leighton, V.H. Crespi, P. Schiffer, Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439(7074), 303–306 (2006)

    Article  ADS  Google Scholar 

  170. Y. Qi, T. Brintlinger, J. Cumings, Direct observation of the ice rule in an artificial kagome spin ice. Phys. Rev. B 77, 094418 (2008)

    Article  ADS  Google Scholar 

  171. M. Tanaka, E. Saitoh, H. Miyajima, T. Yamaoka, Y. Iye, Magnetic interactions in a ferromagnetic honeycomb nanoscale network. Phys. Rev. B 73, 052411 (2006)

    Article  ADS  Google Scholar 

  172. S.H. Skjærvø, C.H. Marrows, R.L. Stamps, L.J. Heyderman, Advances in artificial spin ice. Nat. Rev. Phys. 2(1), 13–28 (2020)

    Article  Google Scholar 

  173. P. Mueller, M. Thiel, M. Wegener, 3D direct laser writing using a 405 nm diode laser. Opt. Lett. 39(24), 6847–6850 (2014)

    Article  ADS  Google Scholar 

  174. A.J. Gross, K. Bertoldi, Additive manufacturing of nanostructures that are delicate, complex, and smaller than ever. Small 15(33), 1902370 (2019)

    Article  Google Scholar 

  175. W.R. Zipfel, R.M. Williams, W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21(11), 1369–1377 (2003)

    Article  Google Scholar 

  176. R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, T.A. Klar, 120 nm resolution and 55 nm structure size in STED-lithography. Opt. Express 21(9), 10831–10840 (2013)

    Article  ADS  Google Scholar 

  177. D. Seniutinas, A. Weber, C. David, Architectural structures open new dimensions in magnetism magnetic buckyballs. Mater. Today 26, 100–101 (2019)

    Article  Google Scholar 

  178. W.F. Van Dorp, C.W. Hagen, A critical literature review of focused electron beam induced deposition. J. Appl. Phys. 104(8), 081301 (2008)

    Article  ADS  Google Scholar 

  179. I. Utke, P. Hoffmann, J. Melngailis, Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B 26(4), 1197–1276 (2020/08/11 2008)

    Google Scholar 

  180. M. Huth, F. Porrati, O.V. Dobrovolskiy, Focused electron beam induced deposition meets materials science. Microelectron. Eng. 185–186, 9–28 (2018)

    Article  Google Scholar 

  181. M. Huth, F. Porrati, S. Barth, Living up to its potential—Direct-write nanofabrication with focused electron beams. J. Appl. Phys. 130(17), 170901 (2021)

    Article  ADS  Google Scholar 

  182. W.F. Van Dorp, B. van Someren, C.W. Hagen, P. Kruit, P.A. Crozier, Approaching the resolution limit of nanometer-scale electron beam-induced deposition. Nano Lett. 5(7), 1303–1307 (2005)

    Google Scholar 

  183. R.M. Thorman, R.K. TP, D.H. Fairbrother, O. Ingólfsson, The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors. Beilstein J. Nanotechnol. 6, 1904–1926 (2015)

    Google Scholar 

  184. A. Fernández-Pacheco, J.M. De Teresa, R. Córdoba, M.R. Ibarra, Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition. J. Phys. D: Appl. Phys. 42(5), 055005 (2009)

    Google Scholar 

  185. R. Córdoba, J. Sesé, J.M. De Teresa, M.R. Ibarra, High-purity cobalt nanostructures grown by focused-electron-beam-induced deposition at low current. Microelectron. Eng. 87(5), 1550–1553 (2010)

    Google Scholar 

  186. R. Córdoba, R. Fernández-Pacheco, A. Fernández-Pacheco, A. Gloter, C. Magén, O. Stéphan, M.R. Ibarra, J.M. De Teresa, Nanoscale chemical and structural study of Co-based FEBID structures by STEM-EELS and HRTEM. Nanoscale Res. Lett. 6(1), 592–592 (2011)

    Google Scholar 

  187. F. Porrati, M. Pohlit, J. Müller, S. Barth, F. Biegger, C. Gspan, H. Plank, M. Huth, Direct writing of CoFe alloy nanostructures by focused electron beam induced deposition from a heteronuclear precursor. Nanotechnology 26(47), 475701 (2015)

    Google Scholar 

  188. L. Keller, M.K.I. Al Mamoori, J. Pieper, C. Gspan, I. Stockem, C. Schröder, S. Barth, R. Winkler, H. Plank, M. Pohlit, J. Müller, M. Huth, Direct-write of free-form building blocks for artificial magnetic 3D lattices. Sci. Rep. 8(1), 6160 (2018)

    Google Scholar 

  189. O.V. Dobrovolskiy, M. Kompaniiets, R. Sachser, F. Porrati, C. Gspan, H. Plank, M. Huth, Tunable magnetism on the lateral mesoscale by post-processing of Co/Pt heterostructures. Beilstein J. Nanotechnol. 6, 1082–1090 (2015)

    Article  Google Scholar 

  190. M.V. Puydinger dos Santos, M.F. Velo, R.D. Domingos, Y. Zhang, X. Maeder, C. Guerra-Nuñez, J.P. Best, F. Béron, K.R. Pirota, S. Moshkalev, J.A. Diniz, I. Utke, Annealing-based electrical tuning of cobalt–carbon deposits grown by focused-electron-beam-induced deposition. ACS Appl. Mater. Interfaces 8(47), 32496–32503 (2016)

    Google Scholar 

  191. O.V. Dobrovolskiy, R. Sachser, S.A. Bunyaev, D. Navas, V.M. Bevz, M. Zelent, W. Smigaj, J. Rychly, M. Krawczyk, R.V. Vovk, M. Huth, G.N. Kakazei, Spin-wave phase inverter upon a single nanodefect. ACS Appl. Mater. Interfaces 11, 17654 (2019)

    Article  Google Scholar 

  192. O.V. Dobrovolskiy, S. Bunyayev, N.R. Vovk, D. Navas, P. Gruszecki, M. Krawczyk, R. Sachser, M. Huth, A.V. Chumak, K.Y. Guslienko, G.N. Kakazei, Spin-wave spectroscopy of individual ferromagnetic nanodisks. Nanoscale 12, 21207 (2020)

    Article  Google Scholar 

  193. M. Toth, C. Lobo, V. Friedli, A. Szkudlarek, I. Utke, Continuum models of focused electron beam induced processing. Beilstein J. Nanotechnol. 6, 1518–1540 (2015)

    Google Scholar 

  194. D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin, CASINO V2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29(3), 92–101 (2020/08/11 2007)

    Google Scholar 

  195. J.D. Fowlkes, R. Winkler, B.B. Lewis, M.G. Stanford, H. Plank, P.D. Rack, Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition. ACS Nano 10(6), 6163–6172 (2016)

    Google Scholar 

  196. J.D. Fowlkes, R. Winkler, B.B. Lewis, A. Fernández-Pacheco, L. Skoric, D. Sanz-Hernández, M.G. Stanford, E. Mutunga, P.D. Rack, H. Plank, High-fidelity 3D-nanoprinting via focused electron beams: computer-aided design (3BID). ACS Appl. Nano Mater. 1, 1028–1041 (2018)

    Google Scholar 

  197. L. Keller, M. Huth, Pattern generation for direct-write three-dimensional nanoscale structures via focused electron beam induced deposition. Beilstein J. Nanotechnol. 9, 2581–2598 (2018)

    Article  Google Scholar 

  198. E. Mutunga, R. Winkler, J. Sattelkow, P.D. Rack, H. Plank, J.D. Fowlkes, Impact of electron-beam heating during 3D nanoprinting. ACS Nano 13(5), 5198–5213 (2019). PMID: 30986036

    Google Scholar 

  199. M.K.I. Al Mamoori, L. Keller, J. Pieper, S. Barth, R. Winkler, H. Plank, J. Müller, M. Huth, Magnetic characterization of direct-write free-form building blocks for artificial magnetic 3D lattices. Materials 11(2), 289 (2018)

    Google Scholar 

  200. M. Al Mamoori, C. Schröder, L. Keller, M. Huth, J. Müller, First-order reversal curves (FORCs) of nano-engineered 3D Co-Fe structures. AIP Adv. 10(1), 015319 (2020)

    Google Scholar 

  201. M. Vázquez (ed.), Magnetic Nano- and Microwires, 2nd edn. (Woodhead Publishing, Sawston, 2020)

    Google Scholar 

  202. R. Hertel, Ultrafast domain wall dynamics in magnetic nanotubes and nanowires. J. Phys.: Condens. Matter 28(48), 483002 (2016)

    Google Scholar 

  203. M. Charilaou, H.B. Braun, J.F. Löffler, Monopole-induced emergent electric fields in ferromagnetic nanowires. Phys. Rev. Lett. 121, 097202 (2018)

    Google Scholar 

  204. J.A. Fernandez-Roldan, R. Perez del Real, C. Bran, M. Vazquez, O. Chubykalo-Fesenko, Magnetization pinning in modulated nanowires: from topological protection to the “corkscrew” mechanism. Nanoscale 10, 5923–5927 (2018)

    Google Scholar 

  205. S. Da Col, S. Jamet, N. Rougemaille, A. Locatelli, T.O. Mentes, B.S. Burgos, R. Afid, M. Darques, L. Cagnon, J.C. Toussaint, O. Fruchart, Observation of Bloch-point domain walls in cylindrical magnetic nanowires. Phys. Rev. B 89, 180405 (2014)

    Article  Google Scholar 

  206. H. Forster, T. Schrefl, D. Suess, W. Scholz, V. Tsiantos, R. Dittrich, J. Fidler, Domain wall motion in nanowires using moving grids (invited). J. Appl. Phys. 91(10), 6914–6919 (2002)

    Article  ADS  Google Scholar 

  207. R. Hertel, Computational micromagnetism of magnetization processes in nickel nanowires. J. Magn. Magn. Mater. 249(1), 251–256 (2002)

    Article  ADS  Google Scholar 

  208. H. Forster, T. Schrefl, W. Scholz, D. Suess, V. Tsiantos, J. Fidler, Micromagnetic simulation of domain wall motion in magnetic nano-wires. J. Magn. Magn. Mater. 249(1), 181–186 (2002)

    Article  ADS  Google Scholar 

  209. Y.P. Ivano, M. Vázquez, O. Chubykalo-Fesenko, Magnetic reversal modes in cylindrical nanowires. J. Phys. D: Appl. Phys. 46(48), 485001 (2013)

    Google Scholar 

  210. J.A. Fernandez-Roldan, Y.P. Ivanov, O. Chubykalo-Fesenko, Micromagnetic modeling of magnetic domain walls and domains in cylindrical nanowires, in Magnetic Nano- and Microwires, 2nd edn., ed. by M. Vázquez (Woodhead Publishing, Sawston, 2020), pp. 403–426

    Google Scholar 

  211. A.D. Kent, S.V. Moln|’ar, S. Gider, D.D. Awschalom, Properties and measurement of scanning tunneling microscope fabricated ferromagnetic particle arrays (invited). J. Appl. Phys. 76(10), 6656–6660 (1994)

    Google Scholar 

  212. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, B. Van Waeyenberge, The design and verification of MuMax3. AIP Adv. 4, 107133 (2014)

    Google Scholar 

  213. R. Hertel, Curvature-induced magnetochirality. Spin 03(03), 1340009 (2013)

    Article  Google Scholar 

  214. E.R. Lewis, D. Petit, L. O’Brien, A. Fernandez-Pacheco, J. Sampaio, A.V. Jausovec, H.T. Zeng, D.E. Read, R.P. Cowburn, Fast domain wall motion in magnetic comb structures. Nat. Mater. 9(12), 980–983 (2010)

    Google Scholar 

  215. J.M. De Teresa, A. Fernández-Pacheco, R. Córdoba, L. Serrano-Ramón, S. Sangiao, M.R. Ibarra, Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID). J. Phys. D: Appl. Phys. 49(24), 243003 (2016)

    Google Scholar 

  216. S. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320(5873), 190–194 (2008)

    Article  ADS  Google Scholar 

  217. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918)

    Google Scholar 

  218. J.J.L. Mulders, Practical precursor aspects for electron beam induced deposition. Nanofabrication 1 (2014)

    Google Scholar 

  219. A. Botman, J.J.L. Mulders, C.W. Hagen, Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective. Nanotechnology 20(37), 372001 (2009)

    Article  Google Scholar 

  220. J. Pablo-Navarro, C. Magén, J.M. De Teresa, Purified and crystalline three-dimensional electron-beam-induced deposits: the successful case of cobalt for high-performance magnetic nanowires. ACS Appl. Nano Mater. 1(1), 38–46 (2018)

    Article  Google Scholar 

  221. T. Lukasczyk, M. Schirmer, H.P. Steinrück, H. Marbach, Electron-beam-induced deposition in ultrahigh vacuum: lithographic fabrication of clean iron nanostructures. Small 4(6), 841–846 (2008)

    Google Scholar 

  222. I. Dzyaloshinsky, A thermodynamic theory of “weak’’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4(4), 241–255 (1958)

    Article  ADS  Google Scholar 

  223. T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120(1), 91–98 (1960)

    Article  ADS  Google Scholar 

  224. S. Emori, U. Bauer, S.M. Ahn, E. Martinez, G.S.D. Beach, Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12(7), 611–616 (2013)

    Article  ADS  Google Scholar 

  225. S. Woo, K. Litzius, B. Krüger, M.Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R.M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M.A. Mawass, P. Fischer, M. Kläui, G.S.D. Beach, Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15(5), 501–506 (2016)

    Google Scholar 

  226. K.S. Ryu, L. Thomas, S.H. Yang, S. Parkin, Chiral spin torque at magnetic domain walls 8(7), 527–533

    Google Scholar 

  227. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Skyrmion lattice in a chiral magnet 323(5916), 915–919

    Google Scholar 

  228. C. Moreau-Luchaire, C. Moutafis, N. Reyren, J. Sampaio, C.A.F. Vaz, N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhüter, J.M. George, M. Weigand, J. Raabe, V. Cros, A. Fert, Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11(5), 444–448 (2016)

    Google Scholar 

  229. A. Fernández-Pacheco, E. Vedmedenko, F. Ummelen, R. Mansell, D. Petit, R.P. Cowburn, Symmetry-breaking interlayer Dzyaloshinskii–Moriya interactions in synthetic antiferromagnets 1 (2019)

    Google Scholar 

  230. A. Fernández-Pacheco, J.M. De Teresa, R. Córdoba, M.R. Ibarra, D. Petit, D.E. Read, L. O’Brien, E.R. Lewis, H.T. Zeng, R.P. Cowburn, Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition. Appl. Phys. Lett. 94(19), 192509 (2009)

    Google Scholar 

  231. D. Sanz-Hernández, R.F. Hamans, J. Osterrieth, J.W. Liao, L. Skoric, J.D. Fowlkes, P.D. Rack, A. Lippert, S.F. Lee, R. Lavrijsen, A. Fernández-Pacheco, Fabrication of scaffold-based 3D magnetic nanowires for domain wall applications. Nanomaterials 8(7), 483 (2018)

    Google Scholar 

  232. D. Sanz-Hernández, R.F. Hamans, J.W. Liao, A. Welbourne, R. Lavrijsen, A. Fernández-Pacheco, Fabrication, detection, and operation of a three-dimensional nanomagnetic conduit. ACS Nano 11(11), 11066–11073 (2017)

    Google Scholar 

  233. D. Sanz Hernández, Fabrication and characterization of three-dimensional magnetic nanostructures. Thesis (2019)

    Google Scholar 

  234. K.A. Omari, T.J. Hayward, Chirality-based vortex domain-wall logic gates. Phys. Rev. Appl. 2(4), 044001 (2014)

    Article  ADS  Google Scholar 

  235. R. Winkler, B. Lewis, J. Fowlkes, P. Rack, H. Plank, High-fidelity 3D-nanoprinting via focused electron beams: growth fundamentals. ACS Appl. Nano Mater. 1(3), 1014–1027 (2018)

    Article  Google Scholar 

  236. R. Winkler, F.P. Schmidt, U. Haselmann, J.D. Fowlkes, B.B. Lewis, G. Kothleitner, P.D. Rack, H. Plank, Direct-write 3D nanoprinting of plasmonic structures. ACS Appl. Mater. Interfaces 9(9), 8233–8240 (2017)

    Google Scholar 

  237. R. Winkler, J.D. Fowlkes, P.D. Rack, H. Plank, 3D nanoprinting via focused electron beams. J. Appl. Phys. 125(21), 210901 (2019)

    Google Scholar 

  238. J. Sattelkow, J.E. Fröch, R. Winkler, S. Hummel, C. Schwalb, H. Plank, Three-dimensional nanothermistors for thermal probing. ACS Appl. Mater. Interfaces 11(25), 22655–22667 (2019)

    Article  Google Scholar 

  239. G. Arnold, R. Winkler, M. Stermitz, A. Orthacker, J.H. Noh, J.D. Fowlkes, G. Kothleitner, M. Huth, P. Rack, H. Plank, Tunable 3D nanoresonators for gas-sensing applications. Adv. Funct. Mater. 28(19), 1707387 (2018)

    Google Scholar 

  240. H. Rogalla, P.H. Kes (eds.), 100 Years of Superconductivity (Taylor & Francis Group, Boca Raton, 2012)

    Google Scholar 

  241. Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  242. W.A. Little, R.D. Parks, Observation of quantum periodicity in the transition temperature of a superconducting cylinder. Phys. Rev. Lett. 9, 9–12 (1962)

    Article  ADS  Google Scholar 

  243. V.V. Moshchalkov, L. Gielen, C. Strunk, R. Jonckheere, X. Qiu, C.V. Haesendonck, Y. Bruynseraede, Effect of sample topology on the critical fields of mesoscopic superconductors. Nature 373(6512), 319–322 (1995)

    Google Scholar 

  244. F. Qin, W. Shi, T. Ideue, M. Yoshida, A. Zak, R. Tenne, T. Kikitsu, D. Inoue, D. Hashizume, Y. Iwasa, Superconductivity in a chiral nanotube. Nat. Commun. 8(1), 14465 (2017)

    Article  ADS  Google Scholar 

  245. A. Lara, O.V. Dobrovolskiy, J.L. Prieto, M. Huth, F.G. Aliev, Magnetization reversal assisted by half antivortex states in nanostructured circular cobalt disks. Appl. Phys. Lett. 105(18), 182402 (2014)

    Google Scholar 

  246. S.A. Bunyaev, B. Budinska, R. Sachser, Q. Wang, K. Levchenko, S. Knauer, A.V. Bondarenko, M. Urbanek, K.Y. Guslienko, A.V. Chumak, M. Huth, G.N. Kakazei, O.V. Dobrovolskiy, Engineered magnetization and exchange stiffness in direct-write Co-Fe nanoelements. Appl. Phys. Lett. 118(2), 022408 (2021)

    Google Scholar 

  247. O.V. Dobrovolskiy, M. Huth, V.A. Shklovskij, Anisotropic magnetoresistive response in thin Nb films decorated by an array of Co stripes. Supercond. Sci. Technol. 23(12), 125014–1–5 (2010)

    Google Scholar 

  248. O.V. Dobrovolskiy, E. Begun, M. Huth, V.A. Shklovskij, M.I. Tsindlekht, Vortex lattice matching effects in a washboard pinning potential induced by Co nanostripe arrays. Phys. C 471(15–16), 449–452 (2011)

    Google Scholar 

  249. O.V. Dobrovolskiy, V.M. Bevz, E. Begun, R. Sachser, R.V. Vovk, M. Huth, Fast dynamics of guided magnetic flux quanta. Phys. Rev. Appl. 11, 054064 (2019)

    Google Scholar 

  250. O. Dobrovolskiy, E. Begun, V. Bevz, R. Sachser, M. Huth, Upper frequency limits for vortex guiding and ratchet effects. Phys. Rev. Appl. 13, 024012 (2020)

    Article  ADS  Google Scholar 

  251. J. Linder, J.W.A. Robinson, Superconducting spintronics. Nat. Phys. 11(4), 307–315 (2015)

    Article  Google Scholar 

  252. M. Kompaniiets, O.V. Dobrovolskiy, C. Neetzel, F. Porrati, J. Brötz, W. Ensinger, M. Huth, Long-range superconducting proximity effect in polycrystalline Co nanowires. Appl. Phys. Lett. 104, 052603 (2014)

    Google Scholar 

  253. I.A. Golovchanskiy, N.N. Abramov, V.S. Stolyarov, V.V. Bolginov, V.V. Ryazanov, A.A. Golubov, A.V. Ustinov, Ferromagnet/superconductor hybridization for magnonic applications. Adv. Funct. Mater. 28(33), 1802375 (2018)

    Google Scholar 

  254. O.V. Dobrovolskiy, R. Sachser, T. Brächer, T. Böttcher, V.V. Kruglyak, R.V. Vovk, V.A. Shklovskij, M. Huth, B. Hillebrands, A.V. Chumak, Magnon-fluxon interaction in a ferromagnet/superconductor heterostructure. Nat. Phys. 15, 477 (2019)

    Google Scholar 

  255. O.V. Dobrovolskiy, A.V. Chumak, Nonreciprocal magnon fluxonics upon ferromagnet/superconductor hybrids. J. Magn. Magn. Mater. 543, 168633 (2022)

    Article  Google Scholar 

  256. R.D. Parks, W.A. Little, Fluxoid quantization in a multiply-connected superconductor. Phys. Rev. 133, A97–A103 (1964)

    Article  ADS  Google Scholar 

  257. Y. Liu, Y. Zadorozhny, M.M. Rosario, B.Y. Rock, P.T. Carrigan, H. Wang, Destruction of the global phase coherence in ultrathin, doubly connected superconducting cylinders. Science 294(5550), 2332 (2001)

    Google Scholar 

  258. G. Carapella, P. Sabatino, G. Costabile, A single Abrikosov vortex trapped in a mesoscopic superconducting cylindrical surface. J. Phys.: Condens. Matter 23(43), 435701 (2011)

    Google Scholar 

  259. P. Sabatino, G. Carapella, G. Costabile, Magneto-transport properties of curved mesoscopic superconducting strips. Supercond. Sci. Technol. 24(12), 125007 (2011)

    Google Scholar 

  260. V.N. Gladilin, J. Tempere, J.T. Devreese, V.V. Moshchalkov, Aharonov-Bohm oscillations in the vortex dynamics in superconducting hollow cylinders. Phys. Rev. B 86, 104508 (2012)

    Google Scholar 

  261. V.M. Fomin, R.O. Rezaev, O.G. Schmidt, Tunable generation of correlated vortices in open superconductor tubes. Nano Lett. 12, 1282 (2012)

    Article  ADS  Google Scholar 

  262. R.O. Rezaev, E.A. Levchenko, V.M. Fomin, Branching of the vortex nucleation period in superconductor Nb microtubes due to an inhomogeneous transport current. Supercond. Sci. Technol. 29(4), 045014 (2016)

    Article  ADS  Google Scholar 

  263. R.O. Rezaev, E.I. Smirnova, O. Schmidt, V.M. Fomin, Topological transitions in superconductor nanomembranes under a strong transport current. Commun. Phys. 3, 144 (2020)

    Google Scholar 

  264. C. Qiu, T. Qian, Numerical study of the phase slips in ultrathin doubly connected superconducting cylinders. Phys. Rev. B 79, 054513 (2009)

    Article  ADS  Google Scholar 

  265. M. Lu-Dac, V.V. Kabanov, Phase slip phenomena in superconductors: from ordered to chaotic dynamics. Phys. Rev. Lett. 105, 157005 (2010)

    Article  ADS  Google Scholar 

  266. Y. Mawatari, Superconducting tubular wires in transverse magnetic fields. Phys. Rev. B 83, 134512 (2011)

    Article  ADS  Google Scholar 

  267. Y.A. Genenko, H. Rauh, S. Kurdi, Finite-element simulations of hysteretic alternating current losses in a magnetically coated superconducting tubular wire subject to an oscillating transverse magnetic field. J. Appl. Phys. 117(24), 243909 (2015)

    Google Scholar 

  268. P. Odier, A. Allais, C. Millon, S. Morlens, L. Ortega, C. Jiménez, L. Porcar, X. Chaud, P. Chaudouët, S. Pairis, P. Tixador, J.L. Soubeyroux, New YBCO superconducting wires obtained from narrow textured tubes. Supercond. Sci. Technol. 22(12), 125024 (2009)

    Google Scholar 

  269. H. Wang, M.M. Rosario, N.A. Kurz, B.Y. Rock, M. Tian, P.T. Carrigan, Y. Liu, Possible observation of phase separation near a quantum phase transition in doubly connected ultrathin superconducting cylinders of aluminum. Phys. Rev. Lett. 95, 197003 (2005)

    Google Scholar 

  270. F. Gömöry, M. Solovyov, J. Souc, C. Navau, J. Prat-Camps, A. Sanchez, Experimental realization of a magnetic cloak. Science 335(6075), 1466 (2012)

    Article  ADS  Google Scholar 

  271. V.M. Fomin, R.O. Rezaev, O. Dobrovolskiy, Topological transitions in ac/dc-driven open superconductor nanotubes. Sci. Rep. 12, 10069 (2022)

    Google Scholar 

  272. M.J.W. Dodgson, M.A. Moore, Vortices in a thin-film superconductor with a spherical geometry. Phys. Rev. B 55, 3816–3831 (1997)

    Article  ADS  Google Scholar 

  273. J. Yeo, M.A. Moore, Noninteger flux quanta for a spherical superconductor. Phys. Rev. B 57, 10785–10789 (1998)

    Article  ADS  Google Scholar 

  274. M.W. Coffey, London model for the levitation force between a horizontally oriented point magnetic dipole and superconducting sphere. Phys. Rev. B 65, 214524 (2002)

    Article  ADS  Google Scholar 

  275. Q. Du, L. Ju, Numerical simulations of the quantized vortices on a thin superconducting hollow sphere. J. Comput. Phys. 201(2), 511–530 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  276. Q. Du, L. Ju, Approximations of a Ginzburg-Landau model for superconducting hollow spheres based on spherical centroidal Voronoi tessellations. J. Math. Comput. 74, 1257–1280 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  277. M.M. Doria, A.R.D.C. Romaguera, M.V. Milošević, F.M. Peeters, Threefold onset of vortex loops in superconductors with a magnetic core. Europhys. Lett. 79(4), 47006 (2007)

    Google Scholar 

  278. A.R.D.C. Romaguera, M.M. Doria, F.M. Peeters, Transverse magnetization and torque in asymmetrical mesoscopic superconductors. Phys. Rev. B 76, 020505 (2007)

    Google Scholar 

  279. O.N. Shevtsova, Giant vortex structures in nanometer-scale spherical type-ii superconducting samples. Supercond. Sci. Technol. 21(6), 065010 (2008)

    Article  ADS  Google Scholar 

  280. J. Tempere, V.N. Gladilin, I.F. Silvera, J.T. Devreese, V.V. Moshchalkov, Coexistence of the Meissner and vortex states on a nanoscale superconducting spherical shell. Phys. Rev. B 79, 134516 (2009)

    Article  ADS  Google Scholar 

  281. B. Xu, M.V. Milošević, F.M. Peeters, Magnetic properties of vortex states in spherical superconductors. Phys. Rev. B 77, 144509 (2008)

    Google Scholar 

  282. B. Xu, M.V. Milosevic, F.M. Peeters, Vortex matter in oblate mesoscopic superconductors with a hole: broken symmetry vortex states and multi-vortex entry. New J. Phys. 11(1), 013020 (2009)

    Article  ADS  Google Scholar 

  283. V.N. Gladilin, J. Tempere, I.F. Silvera, J.T. Devreese, V.V. Moshchalkov, Vortices on a superconducting nanoshell: phase diagram and dynamics. Phys. Rev. B 77, 024512 (2008)

    Google Scholar 

  284. L.R.E. Cabral, J. Albino Aguiar, Vortex configurations on a thin superconducting spherical shell in the presence of a magnetic dipole. Phys. C 470(19), 796–798 (2010)

    Google Scholar 

  285. V. Gladilin, J. Tempere, J. Devreese, V. Moshchalkov, Negative-\(\mu \) regime in the ac magnetic response of superconductor nanoshells. Solid State Commun. 152(18), 1781–1785 (2012)

    Google Scholar 

  286. A. Ludu, Vortex structures inside spherical mesoscopic superconductor plus magnetic dipole. Adv. Math. Phys. 8652151, 1 (2018)

    Google Scholar 

  287. Y.L. Xu, H.C. Gong, Q.S. Fan, S.M. Zhou, Hydrothermal fabrication and superconductivity of isotropic Pb hollow microspheres. Mater. Lett. 130, 57–60 (2014)

    Article  Google Scholar 

  288. M. Hayashi, H. Ebisawa, Little-parks oscillation of superconducting Möbius strip. J. Phys. Soc. Jpn. 70(12), 3495–3498 (2001)

    Article  ADS  Google Scholar 

  289. M. Hayashi, H. Ebisawa, K. Kuboki, Superconductivity on a Möbius strip: numerical studies of order parameter and quasiparticles. Phys. Rev. B 72, 024505 (2005)

    Article  ADS  Google Scholar 

  290. G. Kumagai, T. Matsuura, K. Ichimura, K. Yamaya, K. Inagaki, S. Tanda, Topological effects of the superconducting vortex state in a TaSe\(_3\) ring crystal: observation of magnetic torque oscillations. Phys. Rev. B 81, 184506 (2010)

    Google Scholar 

  291. A. Quelle, C.M. Smith, T. Kvorning, T.H. Hansson, Edge Majoranas on locally flat surfaces: the cone and the Möbius band. Phys. Rev. B 94, 125137 (2016)

    Google Scholar 

  292. Y. Mawatari, Field distributions in curved superconducting tapes conforming to a cylinder carrying transport currents. Phys. Rev. B 80, 184508 (2009)

    Article  ADS  Google Scholar 

  293. V.M. Fomin, R.O. Rezaev, E.A. Levchenko, D. Grimm, O.G. Schmidt, Superconducting properties of nanostructured microhelices. J. Phys. Condens. Matter 29(39), 395301 (2017)

    Google Scholar 

  294. R. Brambilla, F. Grilli, Critical state solution of a cable made of curved thin superconducting tapes. Supercond. Sci. Technol. 27(12), 125010 (2014)

    Google Scholar 

  295. B.A. Tent, D. Qu, D. Shi, W.J. Bresser, P. Boolchand, Z.X. Cai, Angle dependence of magnetization in a single-domain YBa\(_2\)Cu\(_3\)O\(_x\) sphere. Phys. Rev. B 58, 11761–11767 (1998)

    Google Scholar 

  296. R. Tao, X. Zhang, X. Tang, P.W. Anderson, Formation of high temperature superconducting balls. Phys. Rev. Lett. 83, 5575–5578 (1999)

    Google Scholar 

  297. M.J. Martínez-Pérez, J. Pablo-Navarro, B. Müller, R. Kleiner, C. Magén, D. Koelle, J.M. de Teresa, J. Sesé, NanoSQUID magnetometry on individual as-grown and annealed Co nanowires at variable temperature. Nano Lett. 18(12), 7674–7682 (2018)

    Article  ADS  Google Scholar 

  298. Y. Anahory, H.R. Naren, E.O. Lachman, S. Buhbut Sinai, A. Uri, L. Embon, E. Yaakobi, Y. Myasoedov, M.E. Huber, R. Klajn, E. Zeldov, SQUID-on-tip with single-electron spin sensitivity for high-field and ultra-low temperature nanomagnetic imaging. Nanoscale 12, 3174–3182 (2020)

    Google Scholar 

  299. O.V. Dobrovolskiy, R. Sachser, M. Huth, V.A. Shklovskij, R.V. Vovk, V.M. Bevz, M.I. Tsindlekht, Radiofrequency generation by coherently moving fluxons. Appl. Phys. Lett. 112, 152601 (2018)

    Google Scholar 

  300. K. Lenz, R. Narkowicz, K. Wagner, C.F. Reiche, J. Körner, T. Schneider, A. Kákay, H. Schultheiss, U. Weissker, D. Wolf, D. Suter, B. Büchner, J. Fassbender, T. Mühl, J. Lindner, Magnetization dynamics of an individual single-crystalline Fe-filled carbon nanotube. Small 15, 1904315 (2019)

    Google Scholar 

  301. D.J. Thurmer, C. Deneke, O.G. Schmidt, In situ monitoring of the complex rolling behaviour of InGaAs/GaAs/Nb hybrid microtubes. J. Phys. D 41(20), 205419 (2008)

    Google Scholar 

  302. D.J. Thurmer, C.C. Bof Bufon, C. Deneke, O.G. Schmidt, Nanomembrane-based mesoscopic superconducting hybrid junctions. Nano Lett. 10(9), 3704–3709 (2010)

    Google Scholar 

  303. O.V. Dobrovolskiy, D.Y. Vodolazov, F. Porrati, R. Sachser, V.M. Bevz, M.Y. Mikhailov, A.V. Chumak, M. Huth, Ultra-fast vortex motion in a direct-write Nb-C superconductor. Nat. Commun. 11(1), 3291 (2020)

    Google Scholar 

  304. S. Tanda, T. Tsuneta, Y. Okajima, K. Inagaki, K. Yamaya, N. Hatakenaka, A Möbius strip of single crystals. Nature 417(6887), 397–398 (2002)

    Article  Google Scholar 

  305. R. Córdoba, A. Ibarra, D. Mailly, J.M. De Teresa, Vertical growth of superconducting crystalline hollow nanowires by He+ focused ion beam induced deposition. Nano Lett. 18(2), 1379–1386 (2018)

    Article  ADS  Google Scholar 

  306. R.O. Rezaev, E.A. Levchenko, O.G. Schmidt, V.M. Fomin, Dynamics of the Abrikosov vortices on cylindrical microtubes. Russ. Phys. J. 58, 623 (2015)

    Article  Google Scholar 

  307. A. Schmid, The approach to equilibrium in a pure superconductor the relaxation of the cooper pair density. Phys. Kondens. Mater. 8(2), 129–140 (1968)

    ADS  Google Scholar 

  308. B. Oripov, S.M. Anlage, Time-dependent Ginzburg-Landau treatment of RF magnetic vortices in superconductors: vortex semiloops in a spatially nonuniform magnetic field. Phys. Rev. E 101, 033306 (2020)

    Article  ADS  Google Scholar 

  309. A. Lara, C. Gonzalez-Ruano, F.G. Aliev, Time-dependent Ginsburg-Landau simulations of superconducting vortices in three dimensions. Low Temp. Phys./Fiz. Nizk. Temp. 46, 386–394 (2020)

    Google Scholar 

  310. E.I. Smirnova, R.O. Rezaev, V.M. Fomin, Simulation of dynamics of the order parameter in superconducting nanostructured materials: effect of the magnetic field renormalization. Low Temp. Phys. 46(4), 325–330 (2020)

    Article  ADS  Google Scholar 

  311. R. Wördenweber, V. Moshchalkov, S. Bending, F. Tafuri (eds.), Superconductors at the Nanoscale: from Basic Research to Applications (Walter De Gruyter Inc., Berlin, 2017)

    Google Scholar 

  312. O.V. Dobrovolskiy, Abrikosov fluxonics in washboard nanolandscapes. Phys. C 533, 80–90 (2017)

    Article  ADS  Google Scholar 

  313. O.V. Dobrovolskiy, M. Huth, V.A. Shklovskij, Alternating current-driven microwave loss modulation in a fluxonic metamaterial. Appl. Phys. Lett. 107, 162603-1-5 (2015)

    Google Scholar 

  314. A.K. Geim, I.V. Grigorieva, S.V. Dubonos, J.G.S. Lok, J.C. Maan, A.E. Filippov, F.M. Peeters, Phase transitions in individual sub-micrometre superconductors. Nature 390(6657), 259–262 (1997)

    Article  ADS  Google Scholar 

  315. V.A. Schweigert, F.M. Peeters, P.S. Deo, Vortex phase diagram for mesoscopic superconducting disks. Phys. Rev. Lett. 81, 2783–2786 (1998)

    Article  ADS  Google Scholar 

  316. A. Kanda, B.J. Baelus, F.M. Peeters, K. Kadowaki, Y. Ootuka, Experimental evidence for giant vortex states in a mesoscopic superconducting disk. Phys. Rev. Lett. 93, 257002 (2004)

    Google Scholar 

  317. V.M. Fomin, Topology-Driven Effects in Advanced Nanoarchitectures (Springer International Publishing, New York, 2018), pp. 195–220

    Google Scholar 

  318. M. Sato, Y. Ando, Topological superconductors: a review. Rep. Prog. Phys. 80(7), 076501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  319. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)

    Google Scholar 

  320. G. Francica, M. Cuoco, P. Gentile, Topological superconducting phases and Josephson effect in curved superconductors with time reversal invariance. Phys. Rev. B 101, 094504 (2020)

    Article  ADS  Google Scholar 

  321. Z.J. Ying, M. Cuoco, C. Ortix, P. Gentile, Tuning pairing amplitude and spin-triplet texture by curving superconducting nanostructures. Phys. Rev. B 96, 100506 (2017)

    Google Scholar 

  322. T. Kvorning, T.H. Hansson, A. Quelle, C.M. Smith, Proposed spontaneous generation of magnetic fields by curved layers of a chiral superconductor. Phys. Rev. Lett. 120, 217002 (2018)

    Google Scholar 

  323. C. Kallin, J. Berlinsky, Chiral superconductors. Rep. Prog. Phys. 79(5), 054502 (2016)

    Google Scholar 

  324. P. Liu, J.R. Williams, J.J. Cha, Topological nanomaterials. Nat. Rev. Mater. 4(7), 479–496 (2019)

    Article  ADS  Google Scholar 

  325. F. Lüpke, D. Waters, S.C. de la Barrera, M. Widom, D. Mandrus, J. Yan, R.M. Feenstra, B. Hunt, Proximity-induced superconducting gap in the quantum spin Hall edge state of monolayer WTe2. Nat. Phys. 16(5), 526–530 (2020)

    Google Scholar 

  326. L. Jiao, S. Howard, S. Ran, Z. Wang, J.O. Rodriguez, M. Sigrist, Z. Wang, N.P. Butch, V. Madhavan, Chiral superconductivity in heavy-fermion metal UTe\(_2\). Nature 579(7800), 523–527 (2020)

    Google Scholar 

  327. C.X. Trang, N. Shimamura, K. Nakayama, S. Souma, K. Sugawara, I. Watanabe, K. Yamauchi, T. Oguchi, K. Segawa, T. Takahashi, Y. Ando, T. Sato, Conversion of a conventional superconductor into a topological superconductor by topological proximity effect. Nat. Commun. 11(1), 159 (2020)

    Google Scholar 

  328. T. Kawai, C.G. Wang, Y. Kandori, Y. Honoki, K. Matano, T. Kambe, G.Q. Zheng, Direction and symmetry transition of the vector order parameter in topological superconductors Cu\(_x\)Bi\(_2\)Se\(_3\). Nat. Commun. 11(1), 235 (2020)

    Google Scholar 

  329. D.M.T. van Zanten, D. Sabonis, J. Suter, J.I. Väyrynen, T. Karzig, D.I. Pikulin, E.C.T. O’Farrell, D. Razmadze, K.D. Petersson, P. Krogstrup, C.M. Marcus, Photon-assisted tunnelling of zero modes in a Majorana wire. Nat. Phys. 16, 663–668 (2020)

    Google Scholar 

  330. S. Vaitiekėnas, G.W. Winkler, B. van Heck, T. Karzig, M.T. Deng, K. Flensberg, L.I. Glazman, C. Nayak, P. Krogstrup, R.M. Lutchyn, C.M. Marcus, Flux-induced topological superconductivity in full-shell nanowires. Science 367(6485), eaav3392 (2020)

    Google Scholar 

  331. W. Li, P.A. Warburton, Low-current focused-ion-beam induced deposition of three-dimensional tungsten nanoscale conductors. Nanotechnology 18(48), 485305 (2007)

    Article  Google Scholar 

  332. A. Cui, W. Li, Q. Luo, Z. Liu, C. Gu, Freestanding nanostructures for three-dimensional superconducting nanodevices. Appl. Phys. Lett. 100(14), 143106 (2012)

    Article  ADS  Google Scholar 

  333. C. Granata, A. Vettoliere, R. Russo, M. Fretto, N. De Leo, V. Lacquaniti, Three-dimensional spin nanosensor based on reliable tunnel Josephson nano-junctions for nanomagnetism investigations. Appl. Phys. Lett. 103(10), 102602 (2013)

    Google Scholar 

  334. N. De Leo, M. Fretto, V. Lacquaniti, C. Granata, A. Vettoliere, Fabrication of high sensitivity 3D nanoSQUIDs based on a focused ion beam sculpting technique. Supercond. Sci. Technol. 29(9), 094007 (2016)

    Article  ADS  Google Scholar 

  335. M. Schmelz, A. Vettoliere, V. Zakosarenko, N. De Leo, M. Fretto, R. Stolz, C. Granata, 3D nanoSQUID based on tunnel nano-junctions with an energy sensitivity of 1.3 h at 4.2 K. Appl. Phys. Lett. 111(3), 032604 (2017)

    Google Scholar 

  336. P.J.W. Moll, L. Balicas, V. Geshkenbein, G. Blatter, J. Karpinski, N.D. Zhigadlo, B. Batlogg, Transition from slow Abrikosov to fast moving Josephson vortices in iron pnictide superconductors. Nat. Mater. 12, 134 EP – Article (2012)

    Google Scholar 

  337. V. Rouco, M. Massarotti, D. Stornaiuolo, G.P. Papari, X. Obradors, T. Puig, F. Tafuri, A. Palau, Vortex lattice instabilities in YBa\(_2\)Cu\(_3\)O\(_{7-x}\) nanowires. Materials 11, 211 (2018)

    Google Scholar 

  338. O.V. Dobrovolskiy, V.M. Bevz, M.Y. Mikhailov, O.I. Yuzephovich, V.A. Shklovskij, R.V. Vovk, M.I. Tsindlekht, R. Sachser, M. Huth, Microwave emission from superconducting vortices in Mo/Si superlattices. Nat. Commun. 9(1), 4927 (2018)

    Article  ADS  Google Scholar 

  339. K. Makise, K. Mitsuishi, M. Shimojo, B. Shinozaki, Microstructural analysis and transport properties of MoO and MoC nanostructures prepared by focused electron beam-induced deposition. Sci. Rep. 4, 5740 (2014)

    Article  ADS  Google Scholar 

  340. M. Winhold, P.M. Weirich, C.H. Schwalb, M. Huth, Superconductivity and metallic behavior in Pb\(_x\)C\(_y\)O\(_\delta \) structures prepared by focused electron beam induced deposition. Appl. Phys. Lett. 105, 162603 (2014)

    Google Scholar 

  341. S. Sengupta, C. Li, C. Baumier, A. Kasumov, S. Guron, H. Bouchiat, F. Fortuna, Superconducting nanowires by electron-beam-induced deposition. Appl. Phys. Lett. 106, 042601 (2015)

    Article  ADS  Google Scholar 

  342. M. Sidorova, A. Semenov, H.W. Hübers, K. Ilin, M. Siegel, I. Charaev, M. Moshkova, N. Kaurova, G.N. Goltsman, X. Zhang, A. Schilling, Electron energy relaxation in disordered superconducting NbN films. Phys. Rev. B 102, 054501 (2020)

    Google Scholar 

  343. Y.P. Korneeva, N. Manova, I. Florya, M.Y. Mikhailov, O. Dobrovolskiy, A. Korneev, D.Y. Vodolazov, Different single-photon response of wide and narrow superconducting Mo\(_{x}\)Si\(_{1-x}\) strips. Phys. Rev. Appl. 13, 024011 (2020)

    Google Scholar 

  344. C. Donnelly, M. Guizar-Sicairos, V. Scagnoli, S. Gliga, M. Holler, J. Raabe, L.J. Heyderman, Three-dimensional magnetization structures revealed with x-ray vector nanotomography. Nature 547(7663), 328–331 (2017)

    Google Scholar 

  345. K. Witte, A. Späth, S. Finizio, C. Donnelly, B. Watts, B. Sarafimov, M. Odstrcil, M. Guizar-Sicairos, M. Holler, R.H. Fink, J. Raabe, From 2D STXM to 3D imaging: soft x-ray laminography of thin specimens. Nano Lett. 20(2), 1305–1314 (2020)

    Google Scholar 

Download references

Acknowledgements

OVD acknowledges financial support from the Austrian Science Foundation (FWF) under Grant No. I 4889 (CurviMag), the German Research Foundation (DFG) under Grants No. DO 1511/2-1, DO 1511/2-4, DO 1511/3-1, and the COST Actions CA16218 (NANOCOHYBRI) and CA21144 (SUPERQUMAP) of the European Cooperation in Science and Technology. OVP acknowledges financial support, in part, by the German Research Foundation (DFG) Grants No MA 5144/9-1, MA 5144/13-1, MA5144/14-1, MA5144/22-1, MA 5144/24-1, MA 5144/28-1, the Helmholtz Association of German Research Centres in the frame of the Helmholtz Innovation Lab “FlexiSens”. LS and AFP. have been supported by the Winton Program for the Physics of Sustainability. AFP acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101001290). LS was further supported by the EPSRC Cambridge NanoDTC EP/L015978/1. SL acknowledges funding from the Engineering and Physical Science Research Council (Grant No. EP/R009147/1 and EL006669/1). MH acknowledges financial support by the DFG under Grants HU 752/15-1 and HU 752/16-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr V. Dobrovolskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dobrovolskiy, O.V. et al. (2022). Complex-Shaped 3D Nanoarchitectures for Magnetism and Superconductivity. In: Makarov, D., Sheka, D.D. (eds) Curvilinear Micromagnetism. Topics in Applied Physics, vol 146. Springer, Cham. https://doi.org/10.1007/978-3-031-09086-8_5

Download citation

Publish with us

Policies and ethics