Skip to main content

Multi Modal Fusion for Radiogenomics Classification of Brain Tumor

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Abstract

Glioblastomas are the most common and aggressive malignant primary tumor of the central nervous system in adults. The tumours are quite heterogeneous in its shape, texture, and histology. Patients that have been diagnosed with glioblastoma typically have low survival rates and it can take weeks to perform a genetic analysis of an extracted tissue sample. If an effective way to diagnose glioblastomas have been discovered through the use of imaging and AI techniques, this can lead to quality of life improvement for patients through better planning of therapy and surgery required. This work is part of the Brain Tumor Segmentation BraTS 2021 challenge. The challenge is to predict the MGMT promotor methylation status from multi-modal MRI data. We propose a multi-modal late fusion 3D classification network for brain tumor classifcation on 3D MRI images by using all 4 different modalities (T1w, T1wCE, T2w, FLAIR) and also can be extended to include radiomics features or other external features into the network. We also then compare it against 3D classification models trained on each image modality on its own and then ensembled together during inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BraTS challenge. arXiv preprint arXiv:1811.02629 (2018)

  2. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BraTS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  3. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  4. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

    Article  Google Scholar 

  5. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

    Article  Google Scholar 

  6. Goodfellow, I, et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  7. Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging: a review. Med. Image Anal. 58, 101552 (2019)

    Article  Google Scholar 

  8. Kumar, V., et al.: Radiomics: the process and the challenges. Magn. Resonan. Imaging 30(9), 1234–1248 (2012)

    Google Scholar 

  9. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_25

    Chapter  Google Scholar 

  10. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv:2107.02314 (2021)

  11. Davatzikos, C., et al.: Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome. J. Med. Imaging 5(1), 011018 (2018)

    Google Scholar 

  12. Sheller, M.J., et al.: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  13. Nalepa, J., Marcinkiewicz, M., Kawulok, M.: Data augmentation for brain-tumor segmentation: a review. Front. Comput. Neurosci. 13, 83 (2019)

    Article  Google Scholar 

  14. Cirillo, M.D., Abramian, D., Eklund, A.: What is the best data augmentation for 3D brain tumor segmentation?. arXiv preprint arXiv:2010.13372 (2020)

  15. Dai, L., Li, T., Shu, H., Zhong, L., Shen, H., Zhu, H.: Automatic brain tumor segmentation with domain adaptation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 380–392. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_34

    Chapter  Google Scholar 

  16. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning. PMLR (2019)

    Google Scholar 

  17. EfficientNet Google Blog. https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html. Accessed 19 Aug 2021

  18. EfficientNetPytorch-3D. https://github.com/shijianjian/EfficientNet-PyTorch-3D. Accessed 19 Aug 2021

  19. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8026–8037 (2019)

    Google Scholar 

  20. Yaniv, Z., Lowekamp, B.C., Johnson, H.J., Beare, R.: SimpleITK image-analysis notebooks: a collaborative environment for education and reproducible research. J. Digit. Imaging 31(3), 290–303 (2017). https://doi.org/10.1007/s10278-017-0037-8

    Article  Google Scholar 

  21. Lowekamp, B.C., Chen, D.T., Ibáñez, L., Blezek, D.: The design of SimpleITK. Front. Neuroinform. 7, 45 (2013). https://doi.org/10.3389/fninf.2013.00045

    Article  Google Scholar 

  22. Morency, L.-P., Baltrusaitis, T.: Tutorial on multimodal machine learning CMU multimodal communication and machine learning laboratory [MultiComp Lab] (2017)

    Google Scholar 

  23. Hussain, S., Anwar, S.M., Majid, M.: Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282, 248–261 (2018). https://doi.org/10.1016/j.neucom.2017.12.032

    Article  Google Scholar 

  24. Crombé, A., et al.: T2-based MRI delta-radiomics improve response prediction in soft-tissue sarcomas treated by neoadjuvant chemotherapy. J. Magn. Resonan. Imaging 50(2), 497–510 (2019)

    Google Scholar 

  25. Kaggle First Place Solution. https://www.kaggle.com/c/rsna-miccai-brain-tumor-radiogenomic-classification/discussion/281347. Accessed 02 Dec 2021

  26. Kaggle Results Discussion about Low Model Performance by Organizers. https://www.kaggle.com/c/rsna-miccai-brain-tumor-radiogenomic-classification/discussion/284024. Accessed 02 Dec 2021

  27. Li, Y., et al.: Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature. Eur. Radiol. 28(7), 2960–2968 (2018). https://doi.org/10.1007/s00330-017-5267-0

    Article  Google Scholar 

  28. Yogananda, C.G.B., et al.: MRI-based deep-learning method for determining glioma MGMT promoter methylation status. Am. J. Neuroradiol. 42(5), 845–852 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Timothy Sum Hon Mun , Simon Doran , Paul Huang , Christina Messiou or Matthew Blackledge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mun, T.S.H., Doran, S., Huang, P., Messiou, C., Blackledge, M. (2022). Multi Modal Fusion for Radiogenomics Classification of Brain Tumor. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12962. Springer, Cham. https://doi.org/10.1007/978-3-031-08999-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08999-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08998-5

  • Online ISBN: 978-3-031-08999-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics