Skip to main content

On the Effects of Conjunctions in the Solution Set of Multi-adjoint Fuzzy Relation Equations

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2022)

Abstract

A multi-adjoint fuzzy relation equation is defined from a sup-composition operator, which combines different conjunctions. The choice of such compositions has a direct impact on the resolution of the equation. This paper presents a first approach to the consequences of modifying the sup-composition associated with a multi-adjoint fuzzy relation equation in its solution set. Firstly, we show that greater conjunctions lead to lower greatest solutions. Then, two counterexamples are presented to highlight that, in general, an existing ordering in the conjunctions does not lead to comparable minimal solutions. Nevertheless, if the minimal solutions are comparable, we show that greater conjunctions lead to lower minimal solutions.

Supported by the 2014–2020 ERDF Operational Programme in collaboration with the State Research Agency (AEI) in project PID2019-108991GB-I00, and with the Department of Economy, Knowledge, Business and University of the Regional Government of Andalusia in project FEDER-UCA18-108612, and by the European Cooperation in Science & Technology (COST) Action CA17124.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \([0,1]_m\) denotes a regular partitions of [0, 1] into m pieces, for example, \([0,1]_4=\{0,0.25,0.5,0,75,1\}\) divides the unit interval into four pieces.

References

  1. Alcalde, C., Burusco, A., Díaz-Moreno, J.C., Medina, J.: Fuzzy concept lattices and fuzzy relation equations in the retrieval processing of images and signals. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 25(Supplement-1), 99–120 (2017). https://doi.org/10.1142/s0218488517400050

  2. Aliannezhadi, S., Abbasi Molai, A.: A new algorithm for geometric optimization with a single-term exponent constrained by bipolar fuzzy relation equations. Iran. J. Fuzzy Syst. 18(1), 137–150 (2021). https://doi.org/10.22111/ijfs.2021.5879

  3. Cornejo, M.E., Díaz-Moreno, J.C., Medina, J.: Multi-adjoint relation equations: a decision support system for fuzzy logic. Int. J. Intell. Syst. 32(8), 778–800 (2017). https://doi.org/10.1002/int.21889

    Article  Google Scholar 

  4. Cornejo, M.E., Lobo, D., Medina, J.: On the solvability of bipolar max-product fuzzy relation equations with the standard negation. Fuzzy Sets Syst. 410, 1–18 (2021). https://doi.org/10.1016/j.fss.2020.02.010

    Article  MathSciNet  MATH  Google Scholar 

  5. Cornejo, M.E., Lobo, D., Medina, J., De Baets, B.: Bipolar equations on complete distributive symmetric residuated lattices: the case of a join-irreducible right-hand side. Fuzzy Sets Syst. (2022). https://doi.org/10.1016/j.fss.2022.02.003

    Article  MathSciNet  Google Scholar 

  6. Cornejo, M.E., Medina, J., Ramírez-Poussa, E.: Algebraic structure and characterization of adjoint triples. Fuzzy Sets Syst. (2021). https://doi.org/10.1016/j.fss.2021.02.002

    Article  MathSciNet  MATH  Google Scholar 

  7. Cornejo, M.E., Medina, J., Ramírez-Poussa, E.: A comparative study of adjoint triples. Fuzzy Sets Syst. 211, 1–14 (2013). https://doi.org/10.1016/j.fss.2012.05.004

    Article  MathSciNet  MATH  Google Scholar 

  8. De Baets, B.: Analytical solution methods for fuzzy relation equations. In: Dubois, D., Prade, H. (eds.) The Handbooks of Fuzzy Sets Series, vol. 1, pp. 291–340. Kluwer, Dordrecht (1999)

    Google Scholar 

  9. Di Nola, A., Sanchez, E., Pedrycz, W., Sessa, S.: Fuzzy Relation Equations and Their Applications to Knowledge Engineering. Kluwer Academic Publishers, Norwell (1989)

    Book  Google Scholar 

  10. Díaz, J.C., Medina, J.: Multi-adjoint relation equations: definition, properties and solutions using concept lattices. Inf. Sci. 253, 100–109 (2013). https://doi.org/10.1016/j.ins.2013.07.024

    Article  MathSciNet  MATH  Google Scholar 

  11. Díaz-Moreno, J.C., Medina, J.: Using concept lattice theory to obtain the set of solutions of multi-adjoint relation equations. Inf. Sci. 266, 218–225 (2014). https://doi.org/10.1016/j.ins.2014.01.006

    Article  MathSciNet  MATH  Google Scholar 

  12. Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Formal concept analysis via multi-adjoint concept lattices. Fuzzy Sets Syst. 160(2), 130–144 (2009). https://doi.org/10.1016/j.fss.2008.05.004

    Article  MathSciNet  MATH  Google Scholar 

  13. Medina, J.: Multi-adjoint property-oriented and object-oriented concept lattices. Inf. Sci. 190, 95–106 (2012). https://doi.org/10.1016/j.ins.2011.11.016

    Article  MathSciNet  MATH  Google Scholar 

  14. Medina, J., Ojeda-Aciego, M., Valverde, A., Vojtáš, P.: Towards biresiduated multi-adjoint logic programming. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA -2003. LNCS (LNAI), vol. 3040, pp. 608–617. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25945-9_60

    Chapter  Google Scholar 

  15. Pedrycz, W.: Fuzzy relational equations with generalized connectives and their applications. Fuzzy Sets Syst. 10(1–3), 185–201 (1983). https://doi.org/10.1016/S0165-0114(83)80114-6

    Article  MathSciNet  MATH  Google Scholar 

  16. Sanchez, E.: Resolution of composite fuzzy relation equations. Inf. Control 30(1), 38–48 (1976). https://doi.org/10.1016/S0019-9958(76)90446-0

    Article  MathSciNet  MATH  Google Scholar 

  17. Turunen, E.: On generalized fuzzy relation equations: necessary and sufficient conditions for the existence of solutions. Acta Universitatis Carolinae. Mathematica et Physica 28(1), 33–37 (1987). http://eudml.org/doc/246361

  18. Yager, R.R.: An approach to inference in approximate reasoning. Int. J. Man Mach. Stud. 13(3), 323–338 (1980). https://doi.org/10.1016/S0020-7373(80)80046-0

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Lobo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lobo, D., López-Marchante, V., Medina, J. (2022). On the Effects of Conjunctions in the Solution Set of Multi-adjoint Fuzzy Relation Equations. In: Ciucci, D., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2022. Communications in Computer and Information Science, vol 1601. Springer, Cham. https://doi.org/10.1007/978-3-031-08971-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08971-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08970-1

  • Online ISBN: 978-3-031-08971-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics