Skip to main content

A Structural Examination of Metallacrowns with Main Group Elements in the Ring Positions

  • Chapter
  • First Online:
Advances in Metallacrown Chemistry

Abstract

The aim of this chapter is to highlight recent metallacrown chemistry that utilizes main group elements in the metallacrown ring. Since the first vanadium-based 9-MC-3 was reported in 1989, metallacrown structures have traditionally included transition metal ions in the ring position of metallamacrocycles. These metals have imparted attractive properties to the metallacrowns such as molecular magnetism, catalysis, molecular recognition, and selective guest binding. While one of the first described metallacrowns in 1993 contained the main group element gallium in the ring positions, a 12-MC-4 dimer, little research was directed to these types of elements until recently. Not only has gallium now been incorporated into the metallacrown ring, but the elements aluminum, indium, tin, lithium, sodium, silicon, and tellurium have also been used to generate archetypal metallacrowns with a M–N–O repeat unit and/or azametallacrowns with a M–N–N repeat unit. The resulting metallacrowns have interesting properties including single-molecule magnetism, luminescence, and bioactivity. This chapter will examine the structural diversity of metallacrowns that can be achieved with main group elements and will feature some of the interesting properties and applications of these molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pecoraro, V.L.: Structural characterization of [VO(salicylhydroximate)(CH3OH)]3: applications to the biological chemistry of vanadium(V). Inorg. Chim. Acta. 155, 171–173 (1989). https://doi.org/10.1016/S0020-1693(00)90405-5

    Article  CAS  Google Scholar 

  2. Mezei, G., Zaleski, C.M., Pecoraro, V.L.: Structural and functional evolutions of metallacrowns. Chem. Rev. 107, 4933–5003 (2007). https://doi.org/10.1021/cr078200h

    Article  CAS  PubMed  Google Scholar 

  3. Chow, C.Y., Trivedi, E.R., Pecoraro, V., Zaleski, C.M.: Heterometallic mixed 3d4f metallacrowns: structural versatility, luminescence, and molecular magnetism. Comments Inorg. Chem. 35, 214–253 (2015). https://doi.org/10.1080/02603594.2014.981811

    Article  CAS  Google Scholar 

  4. Lutter, J.C., Zaleski, C.M., Pecoraro, V.L.: Metallacrowns: supramolecular constructs with potential in extended solids, solution-state dynamics, molecular magnetism, and imaging. In: Eldik, R. van, Puchta, R. (eds.) Advances in Inorganic Chemistry, pp. 177–246. Academic Press (2018)

    Google Scholar 

  5. Lah, M.S., Gibney, B.R., Tierney, D.L., Penner-Hahn, J.E., Pecoraro, V.L.: The fused metallacrown anion Na2{[Na0.5[Ga(salicylhydroximate)]4]22-OH)4} is an inorganic analog of a cryptate. J. Am. Chem. Soc. 115, 5857–5858 (1993). https://doi.org/10.1021/ja00066a077

  6. Chow, C.Y., Eliseeva, S.V., Trivedi, E.R., Nguyen, T.N., Kampf, J.W., Petoud, S., Pecoraro, V.L.: Ga3+/Ln3+ metallacrowns: a promising family of highly luminescent lanthanide complexes that covers visible and near-infrared domains. J. Am. Chem. Soc. 138, 5100–5109 (2016). https://doi.org/10.1021/jacs.6b00984

    Article  CAS  PubMed  Google Scholar 

  7. Bünzli, J.-C.G., Eliseeva, S.V.: Basics of lanthanide photophysics. In: Hanninen, P., Harma, H. (eds.) Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects, pp. 1–45. Springer, Berlin (2010)

    Google Scholar 

  8. Nguyen, T.N., Eliseeva, S.V., Chow, C.Y., Kampf, J.W., Petoud, S., Pecoraro, V.L.: Peculiarities of crystal structures and photophysical properties of GaIII/LnIII metallacrowns with a non-planar [12-MC-4] core. Inorg. Chem. Front. 7, 1553–1563 (2020). https://doi.org/10.1039/C9QI01647C

    Article  CAS  Google Scholar 

  9. Nguyen, T.N., Chow, C.Y., Eliseeva, S.V., Trivedi, E.R., Kampf, J.W., Martinić, I., Petoud, S., Pecoraro, V.L.: One-step assembly of visible and near-infrared emitting metallacrown dimers using a bifunctional linker. Chem. Eur. J. 24, 1031–1035 (2018). https://doi.org/10.1002/chem.201703911

    Article  CAS  PubMed  Google Scholar 

  10. Lutter, J.C., Eliseeva, S. V., Kampf, J.W., Petoud, S., Pecoraro, V.L.: A unique LnIII{[3.3.1]GaIII Metallacryptate} series that possesses properties of slow magnetic relaxation and visible/near-infrared luminescence. Chem. Eur. J. 24, 10773–10783 (2018). https://doi.org/10.1002/chem.201801355

  11. Athanasopoulou, A.A., Baldoví, J.J., Carrella, L.M., Rentschler, E.: Field-induced slow magnetic relaxation in the first Dy(III)-centered 12-metallacrown-4 double-decker. Dalton Trans. 48, 15381–15385 (2019). https://doi.org/10.1039/C9DT02432H

    Article  CAS  PubMed  Google Scholar 

  12. Lutter, J.C., Lopez Bermudez, B.A., Nguyen, T.N., Kampf, J.W., Pecoraro, V.L.: Functionalization of luminescent lanthanide-gallium metallacrowns using copper-catalyzed alkyne-azide cycloaddition and thiol-maleimide Michael addition. J. Inorg. Biochem. 192, 119–125 (2019). https://doi.org/10.1016/j.jinorgbio.2018.12.011

    Article  CAS  PubMed  Google Scholar 

  13. Lutter, J.C., Eliseeva, S.V., Collet, G., Martinić, I., Kampf, J.W., Schneider, B.L., Carichner, A., Sobilo, J., Lerondel, S., Petoud, S., Pecoraro, V.L.: Iodinated metallacrowns: toward combined bimodal near-infrared and X-ray contrast imaging agents. Chem. Eur. J. 26, 1274–1277 (2020). https://doi.org/10.1002/chem.201905241

    Article  CAS  PubMed  Google Scholar 

  14. Eliseeva, S.V., Salerno, E.V., Lopez Bermudez, B.A., Petoud, S., Pecoraro, V.L.: Dy3+ white light emission can be finely controlled by tuning the first coordination sphere of Ga3+/Dy3+ metallacrown complexes. J. Am. Chem. Soc. 142, 16173–16176 (2020). https://doi.org/10.1021/jacs.0c07198

    Article  CAS  PubMed  Google Scholar 

  15. Salerno, E.V., Zeler, J., Eliseeva, S.V., Hernández-Rodríguez, M.A., Carneiro Neto, A.N., Petoud, S., Pecoraro, V.L., Carlos, L.D.: [Ga3+8Sm3+2, Ga3+8Tb3+2] metallacrowns are highly promising ratiometric luminescent molecular nanothermometers operating at physiologically relevant temperatures. Chem. Eur. J. 26, 13792–13796 (2020). https://doi.org/10.1002/chem.202003239

    Article  CAS  PubMed  Google Scholar 

  16. Happ, P., Plenk, C., Rentschler, E.: 12-MC-4 metallacrowns as versatile tools for SMM research. Coord. Chem. Rev. 289–290, 238–260 (2015). https://doi.org/10.1016/j.ccr.2014.11.012

    Article  CAS  Google Scholar 

  17. Rinehart, J.D., Long, J.R.: Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem. Sci. 2, 2078 (2011). https://doi.org/10.1039/c1sc00513h

    Article  CAS  Google Scholar 

  18. Jiang, X.F., Chen, M.G., Tong, J.P., Shao, F.: A mononuclear dysprosium(III) single-molecule magnet with a non-planar metallacrown. New J. Chem. 43, 8704–8710 (2019). https://doi.org/10.1039/c9nj01662g

    Article  CAS  Google Scholar 

  19. Chow, C.Y., Bolvin, H., Campbell, V.E., Guillot, R., Kampf, J.W., Wernsdorfer, W., Gendron, F., Autschbach, J., Pecoraro, V.L., Mallah, T.: Assessing the exchange coupling in binuclear lanthanide(III) complexes and the slow relaxation of the magnetization in the antiferromagnetically coupled Dy2 derivative. Chem. Sci. 6, 4148–4159 (2015). https://doi.org/10.1039/C5SC01029B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Macrae, C.F., Sovago, I., Cottrell, S.J., Galek, P.T.A., McCabe, P., Pidcock, E., Platings, M., Shields, G.P., Stevens, J.S., Towler, M., Wood, P.A.: Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 53, 226–235 (2020). https://doi.org/10.1107/S1600576719014092

  21. Llunell, M., Casanova, D., Cicera, J., Alemany, P., Alvarez, S.: SHAPE, version 2.1 (2013), Barcelona, Spain

    Google Scholar 

  22. Cirera, J., Ruiz, E., Alvarez, S.: Continuous shape measures as a stereochemical tool in organometallic chemistry. Organometallics 24, 1556–1562 (2005). https://doi.org/10.1021/om049150z

    Article  CAS  Google Scholar 

  23. Casanova, D., Cirera, J., Llunell, M., Alemany, P., Avnir, D., Alvarez, S.: Minimal distortion pathways in polyhedral rearrangements. J. Am. Chem. Soc. 126, 1755–1763 (2004). https://doi.org/10.1021/ja036479n

    Article  CAS  PubMed  Google Scholar 

  24. Azar, M.R., Boron, T.T., Lutter, J.C., Daly, C.I., Zegalia, K.A., Nimthong, R., Ferrence, G.M., Zeller, M., Kampf, J.W., Pecoraro, V.L., Zaleski, C.M.: Controllable formation of heterotrimetallic coordination compounds: systematically incorporating lanthanide and alkali metal ions into the manganese 12-metallacrown-4 framework. Inorg. Chem. 53, 1729–1742 (2014). https://doi.org/10.1021/ic402865p

    Article  CAS  PubMed  Google Scholar 

  25. Boron, T.T., Lutter, J.C., Daly, C.I., Chow, C.Y., Davis, A.H., Nimthong-Roldán, A., Zeller, M., Kampf, J.W., Zaleski, C.M., Pecoraro, V.L.: The nature of the bridging anion controls the single-molecule magnetic properties of DyX4M 12-metallacrown-4 complexes. Inorg. Chem. 55, 10597–10607 (2016). https://doi.org/10.1021/acs.inorgchem.6b01832

    Article  CAS  PubMed  Google Scholar 

  26. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  CAS  Google Scholar 

  27. Pecoraro, V.L., Stemmler, A.J., Gibney, B.R., Bodwin, J.J., Wang, H., Kampf, J.W., Barwinski, A.: Metallacrowns: a new class of molecular recognition agents. In: Karlin, K.D. (ed.) Progress in Inorganic Chemistry, vol. 90, pp. 83–178. Wiley (1997)

    Google Scholar 

  28. Travis, J.R., Smihosky, A.M., Kauffman, A.C., Ramstrom, S.E., Lewis, A.J., Nagy, S.G., Rheam, R.E., Zeller, M., Zaleski, C.M.: Syntheses and crystal structures of two classes of aluminum-lanthanide-sodium heterotrimetallic 12-metallacrown-4 compounds: individual molecules and dimers of metallacrowns. J. Chem. Crystallogr. 51, 372–393 (2021). https://doi.org/10.1007/s10870-020-00861-2

    Article  CAS  Google Scholar 

  29. Eliseeva, S.V., Travis, J.R., Nagy, S.G., Smihosky, A.M., Foley, C.M., Kauffman, A.C., Zaleski, C.M., Petoud, S.: Visible and near-infrared emitting heterotrimetallic lanthainde-aluminum-sodium 12-metallacrown-4 compounds: discrete monomers and dimers. Dalton Trans. 51, X–X (2022). https://doi.org/10.1039/D1DT04277G

  30. Travis, J.R., Van Trieste III, G.P., Zeller, M., Zaleski, C.M.: Crystal structures of two dysprosium–aluminium–sodium [3.3.1] metallacryptates that form two-dimensional sheets. Acta Cryst. E76, 1378–1390 (2020). https://doi.org/10.1107/S2056989020010130

  31. Rheam, R.E., Zeller, M., Zaleski, C.M.: Crystal structures of three anionic lanthanide–aluminium [3.3.1] metallacryptate complexes. Acta Cryst. E76, 1458–1466 (2020). https://doi.org/10.1107/S2056989020010725

  32. Kübel, J., Elder, P.J.W., Jenkins, H.A., Vargas-Baca, I.: Structure and formation of the first (–O–Te–N–)4 ring. Dalton Trans. 39, 11126–11128 (2010). https://doi.org/10.1039/c0dt01102a

    Article  CAS  PubMed  Google Scholar 

  33. Ho, P.C., Szydlowski, P., Sinclair, J., Elder, P.J.W., Kübel, J., Gendy, C., Lee, L.M., Jenkins, H., Britten, J.F., Morim, D.R., Vargas-Baca, I.: Supramolecular macrocycles reversibly assembled by Te⋯O chalcogen bonding. Nat. Commun. 7, 11299 (2016). https://doi.org/10.1038/ncomms11299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ho, P.C., Rafique, J., Lee, J., Lee, L.M., Jenkins, H.A., Britten, J.F., Braga, A.L., Vargas-Baca, I.: Synthesis and structural characterisation of the aggregates of benzo-1,2-chalcogenazole 2-oxides. Dalton Trans. 46, 6570–6579 (2017). https://doi.org/10.1039/c7dt00612h

    Article  CAS  PubMed  Google Scholar 

  35. Ho, P.C., Bui, R., Cevallos, A., Sequeira, S., Britten, J.F., Vargas-Baca, I.: Macrocyclic complexes of Pt(II) and Rh(III) with iso-tellurazole: N-oxides. Dalton Trans. 48, 4879–4886 (2019). https://doi.org/10.1039/c9dt00500e

    Article  CAS  PubMed  Google Scholar 

  36. Wang, J., Ho, P.C., Britten, J.F., Tomassetti, V., Vargas-Baca, I.: Structural diversity of the complexes of monovalent metal d10 ions with macrocyclic aggregates of iso-tellurazole: N-oxides. New J. Chem. 43, 12601–12608 (2019). https://doi.org/10.1039/c9nj02217a

    Article  CAS  Google Scholar 

  37. Zhao, X.-J., Li, D.-C., Zhang, Q.-F., Wang, D.-Q., Dou, J.-M.: The novel example of organotin(IV) metallacrowns: syntheses, characterizations and crystal structures of [12-MC[RSn(IV)]N(shi)-4] complexes (R=Et, Bu, Ph; Shi=salicylhydroxamic acid). Inorg. Chem. Commun. 13, 346–349 (2010). https://doi.org/10.1016/j.inoche.2009.12.018

    Article  CAS  Google Scholar 

  38. Zhao, X.-J., Zhang, Q.-F., Li, D.-C., Dou, J.-M., Wang, D.-Q.: Syntheses, structural characterizations and properties of 12-MC-4 organotin(IV) metallacrowns: [12-MCRSn(IV)N(shi)-4] and [12-MCRSn(IV)N(Clshi)-4] (R = Et, Bu, Ph; H3shi = salicylhydroxamic acid; H3Clshi = 5-chlorosalicylhydroxamic acid). J. Organomet. Chem. 695, 2134–2141 (2010). https://doi.org/10.1016/j.jorganchem.2010.05.027

    Article  CAS  Google Scholar 

  39. Atkins, T.J., Richman, J.E., Oettle, W.F.: Macrocyclic polyamines: 1,4,7,10,13,16-hexaäzacycloöctadecane. Org. Synth. 58, 86–98 (1978). https://doi.org/10.15227/orgsyn.058.0086

  40. Kim, I., Kwak, B., Soo Lah, M.: A series of nanometer-sized hexanuclear Co-, Fe-, and Ga-metallamacrocycles. Inorg. Chim. Acta. 317, 12–20 (2001). https://doi.org/10.1016/S0020-1693(01)00361-9

    Article  CAS  Google Scholar 

  41. Lee, K., John, R.P., Park, M., Moon, D., Ri, H.-C., Kim, G.H., Lah, M.S.: Steric control of the nuclearity of metallamacrocycles: formation of a hexanuclear gallium metalladiazamacrocycle and a hexadecanuclear manganese metalladiazamacrocycle. Dalton Trans. 131–136 (2008). https://doi.org/10.1039/B711686A

  42. Park, M., John, R.P., Moon, D., Lee, K., Kim, G.H., Lah, M.S.: Two octanuclear gallium metallamacrocycles of topologically different connectivities. Dalton Trans. 5412 (2007). https://doi.org/10.1039/b710531b

  43. Oh, M., Liu, X., Park, M., Kim, D., Moon, D., Lah, M.S.: Entropically driven self-assembly of a strained hexanuclear indium metal–organic macrocycle and its behavior in solution. Dalton Trans. 40, 5720 (2011). https://doi.org/10.1039/c1dt10220f

    Article  CAS  PubMed  Google Scholar 

  44. Uhl, W., Molter, J., Neumüller, B.: Synthesis of aluminum hydrazides by hydroalumination of 2,3-diazabutadienes—formation of an Al4(N2)3 cage compound and an Al3(N2)3 macrocyclic ligand. Chem. Eur. J. 7, 1510–1515 (2001). https://doi.org/10.1002/1521-3765(20010401)7:7%3c1510::AID-CHEM1510%3e3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  45. Bitto, F., Kraushaar, K., Böhme, U., Brendler, E., Wagler, J., Kroke, E.: Chlorosilanes and 3,5-dimethylpyrazole: multinuclear complexes, acetonitrile insertion and 29Si NMR chemical-shift anisotropy studies. Eur. J. Inorg. Chem. 2013, 2954–2962 (2013). https://doi.org/10.1002/ejic.201300109

    Article  CAS  Google Scholar 

  46. Wagler, J., Bitto, F.: (μ3-Oxo)-hexakis(μ2-3,5-dimethylpyrazolato)-trihydrido-tri-silicon (μ2-hydrido)-bis(μ2-3,5-dimethylpyrazolato)-tetrachloro-dihydrido-di-silicon toluene solvate. CSD Commun. (2014). https://doi.org/10.5517/cc12k1h5

    Article  Google Scholar 

  47. Ma, C., Sun, J., Zhang, R., Wang, D.: Self-assembly of organooxotin(IV) clusters with Schiff-base-containing-triazole from hydrolysis or solvothermal synthesis: crystal structures, hydrogen bonds, C-H⋯π stacking and S⋯S interaction. J. Organomet. Chem. 692, 4029–4042 (2007). https://doi.org/10.1016/j.jorganchem.2007.04.039

    Article  CAS  Google Scholar 

  48. Feng, Y.-L., Zhang, F.-X., Kuang, D.-Z., Yang, C.-L.: Two novel dibutyltin complexes with trimers and hexanuclear based on the bis(5-Cl/Me-salicylaldehyde) carbohydrazide: syntheses, structures, fluorescent properties and herbicidal activity. Chin. J. Struct. Chem. 4, 682–692 (2020)

    Google Scholar 

  49. Eaborn, C., El-Hamruni, S.M., Hill, M.S., Hitchcock, P.B., Hopman, M., Le Gouic, A., Smith, J.D.: Syntheses of some bulky alkylalanes and alkyltrihydroaluminates: crystal structures of [Li(THF)2AlH3C(SiMe3)2(SiMe2NMe2)]2, Li(THF)2Al2H5{C(SiMe3)3}2, (Me3Si)3CAlH2·THF and the pyrazolato derivative [LiAlH(C3H3N2)2C(SiMe3)3]2 (THF=tetrahydrofuran). J. Organomet. Chem. 597, 3–9 (2000). https://doi.org/10.1016/S0022-328X(99)00507-0

    Article  CAS  Google Scholar 

  50. Jack, K.S., Jeffery, J.C., Leedham, A.P., Lynam, J.M., Niedzwiecki, M., Russell, C.A.: Syntheses and structures of bis(imido)organophosphine dianions. Can. J. Chem. 80, 1458–1462 (2002). https://doi.org/10.1139/v02-144

    Article  CAS  Google Scholar 

  51. Levin, J.R., Dorfner, W.L., Carroll, P.J., Schelter, E.J.: Control of cerium oxidation state through metal complex secondary structures. Chem. Sci. 6, 6925–6934 (2015). https://doi.org/10.1039/C5SC02607E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Levin, J.R., Cheisson, T., Carroll, P.J., Schelter, E.J.: Accessing relatively electron poor cerium(IV) hydrazido complexes by lithium cation promoted ligand reduction. Dalton Trans. 45, 15249–15258 (2016). https://doi.org/10.1039/C6DT03154D

    Article  CAS  PubMed  Google Scholar 

  53. Yin, G.-J., Zhang, Q., Li, D.: Tetrakis[μ3-4-nitro-N-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamidato]tetrakis[methanolsodium(I)]. Acta Cryst. E68, m570–m570 (2012). https://doi.org/10.1107/S1600536812014791

    Article  CAS  Google Scholar 

  54. Gao, H., Xu, C., Duan, L.-M., Wang, Z.-Q., Fan, Y.-T.: Crystal structure of methanol[μ-N-(5-phenyl-1,3,4-oxadiazol-2-yl)- 4-nitrobenzamide-κ2N1,O1:κN2]sodium, Na(CH4O)(C15H9N4O4). Z. Kristallogr. NCS 227 (2012). https://doi.org/10.1524/ncrs.2012.0086

  55. Travieso-Puente, R., Chang, M.-C., Otten, E.: Alkali metal salts of formazanate ligands: diverse coordination modes as a result of the nitrogen-rich [NNCNN] ligand backbone. Dalton Trans. 43, 18035–18041 (2014). https://doi.org/10.1039/C4DT02578D

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob C. Lutter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lutter, J.C., Zaleski, C.M. (2022). A Structural Examination of Metallacrowns with Main Group Elements in the Ring Positions. In: Zaleski, C.M. (eds) Advances in Metallacrown Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-08576-5_9

Download citation

Publish with us

Policies and ethics