Skip to main content

Aspects of NMR Characterization of Metallacrowns

  • Chapter
  • First Online:
Advances in Metallacrown Chemistry

Abstract

Metallacrowns (MCs) are self-assembled metallamacrocycles that confine a significant number of metal ions and organic ligands in a small molecular volume. These assembled structures present a cavity that can selectively encapsulate specific metal ions which provide MCs with peculiar spectroscopic features and reactivity. Also, MCs can bind inorganic and organic anions allowing their use in strategies of molecular recognition. For these reasons, including remarkable stability and inertness toward disassembly and the presence of paramagnetic ions in their structure, MCs possibly are among the most interesting metallamacrocyclic complexes known to date. The elucidation of dynamic processes of ligand and solvent exchange in solution is pivotal in the study of MCs as potential probes in biological imaging, as nanoshuttles for drug delivery or in molecular recognition and sensing. In this chapter, we will present and discuss representative examples of NMR investigations of metallacrowns reactivity, dynamics of assembly, and cations/anions binding. The strategies and conditions employed in the 1D NMR characterization of MCs will be discussed along with the most recent PGSE approaches. Also, we will discuss how the paramagnetic nature of these complexes opens a window into the study of their structure in solution through NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ostrowska, M., Fritsky, I.O., Gumienna-Kontecka, E., Pavlishchuk, A.V.: Metallacrown-based compounds: Applications in catalysis, luminescence, molecular magnetism, and adsorption. Coord. Chem. Rev. 327–328, 304–332 (2016). https://doi.org/10.1016/j.ccr.2016.04.017

    Article  CAS  Google Scholar 

  2. Nguyen, T.N., Pecoraro, V.L.: Metallacrowns: From discovery to potential applications in biomolecular imaging. In: Comprehensive Supramolecular Chemistry II. pp. 195–212. Elsevier (2017)

    Google Scholar 

  3. Lutter, J.C., Zaleski, C.M., Pecoraro, V.L.: Metallacrowns: supramolecular constructs with potential in extended solids, solution-state dynamics, molecular magnetism, and imaging. In: Advances in Inorganic Chemistry. pp. 177–246. Elsevier Inc. (2018)

    Google Scholar 

  4. Mezei, G., Zaleski, C.M., Pecoraro, V.L.: Structural and functional evolution of metallacrowns. Chem. Rev. 107, 4933–5003 (2007). https://doi.org/10.1021/cr078200h

    Article  CAS  PubMed  Google Scholar 

  5. Pecoraro, V.L., Stemmler, A.J., Gibney, B.R., Bodwin, J.J., Wang, H., Kampf, J.W., Barwinski, A.: Metallacrowns: a new class of molecular recognition agents. Progress Inorgan. Chem. 45, 83–177. Wiley (1997)

    Google Scholar 

  6. Tegoni, M., Remelli, M.: Metallacrowns of copper(II) and aminohydroxamates: thermodynamics of self assembly and host–guest equilibria. Coord. Chem. Rev. 256, 289–315 (2012). https://doi.org/10.1016/j.ccr.2011.06.007

    Article  CAS  Google Scholar 

  7. Kurzak, B., Kozłowski, H., Farkas, E.: Hydroxamic and aminohydroxamic acids and their complexes with metal ions. Coord. Chem. Rev. 114, 169–200 (1992). https://doi.org/10.1016/0010-8545(92)85002-8

    Article  CAS  Google Scholar 

  8. Bodwin, J.J., Cutland, A.D., Malkani, R.G., Pecoraro, V.L.: The development of chiral metallacrowns into anion recognition agents and porous materials. Coord. Chem. Rev. 216–217, 489–512 (2001). https://doi.org/10.1016/S0010-8545(00)00396-9

    Article  Google Scholar 

  9. Cutland, A.D., Halfen, J.A., Kampf, J.W., Pecoraro, V.L.: Chiral 15-Metallacrown-5 complexes differentially bind carboxylate anions. J. Am. Chem. Soc. 123, 6211–6212 (2001). https://doi.org/10.1021/ja015610t

    Article  CAS  PubMed  Google Scholar 

  10. Cutland, A.D., Malkani, R.G., Kampf, J.W., Pecoraro, V.L.: Lanthanide [15] Metallacrown-5 complexes form nitrate-selective chiral cavities. Angew. Chemie Int. Ed. 39, 2689–2692 (2000). https://doi.org/10.1002/1521-3773(20000804)39:15%3c2689::AID-ANIE2689%3e3.0.CO;2-0

    Article  CAS  Google Scholar 

  11. Cutland-Van Noord, A.D., Kampf, J.W., Pecoraro, V.L.: Preparation of resolved fourfold symmetric amphiphilic helices using chiral metallacrown building blocks. Angew. Chem. Int. Ed. Engl. 41, 4667–4670 (2002). https://doi.org/10.1002/anie.200290010

    Article  CAS  PubMed  Google Scholar 

  12. Jankolovits, J., Cutland Van-Noord, A.D., Kampf, J.W., Pecoraro, V.L.: Selective anion encapsulation in solid-state Ln(III)[15-metallacrown-5]3+ compartments through secondary sphere interactions. Dalton Trans. 42, 9803–9808 (2013). https://doi.org/10.1039/c3dt50535a

    Article  CAS  PubMed  Google Scholar 

  13. Tegoni, M., Remelli, M., Bacco, D., Marchiò, L., Dallavalle, F.: Copper(II) 12-metallacrown-4 complexes of alpha-, beta- and gamma-aminohydroxamic acids: a comparative thermodynamic study in aqueous solution. Dalton Trans. 2693–2701 (2008). https://doi.org/10.1039/b718765c

  14. Zaleski, C.M., Lim, C.-S.S., Cutland-Van Noord, A.D., Kampf, J.W., Pecoraro, V.L.: Effects of the central lanthanide ion crystal radius on the 15-MC(Cu(II)(N)pheHA)-5 structure. Inorg. Chem. 50, 7707–7717 (2011). https://doi.org/10.1021/ic200740h

  15. Parac-Vogt, T.N., Pacco, A., Görller-Walrand, C., Binnemans, K.: Pentacopper(II) complexes of α-aminohydroxamic acids: uranyl-induced conversion of a 12-metallacrown-4 to a 15-metallacrown-5. J. Inorg. Biochem. 99, 497–504 (2005). https://doi.org/10.1016/j.jinorgbio.2004.10.023

    Article  CAS  PubMed  Google Scholar 

  16. Pacco, A., Parac-Vogt, T.N., Van Besien, E., Pierloot, K., Görller-Walrand, C., Binnemans, K.: Lanthanide(III)-induced conversion of 12-metallacrown-4 to 5-metallacrown-5 complexes in solution. Eur. J. Inorg. Chem. 3303–3310 (2005). https://doi.org/10.1002/ejic.200500241

  17. Dallavalle, F., Remelli, M., Sansone, F., Bacco, D., Tegoni, M.: Thermodynamics of self-assembly of copper(II) 15-metallacrown-5 of Eu(III) or Gd(III) with (S)-α-alaninehydroxamic acid in aqueous solution. Inorg. Chem. 49, 1761–1772 (2010). https://doi.org/10.1021/ic902146d

    Article  CAS  PubMed  Google Scholar 

  18. Lim, C.-S., Tegoni, M., Jakusch, T., Kampf, J.W., Pecoraro, V.L.: Clarifying the mechanism of cation exchange in Ca(II)[15-MC Cu(II)Ligand -5] complexes. Inorg. Chem. 51, 11533–11540 (2012). https://doi.org/10.1021/ic3013798

    Article  CAS  PubMed  Google Scholar 

  19. Tegoni, M., Furlotti, M., Tropiano, M., Lim, C.S., Pecoraro, V.L.: Thermodynamics of core metal replacement and self-assembly of Ca 2+ 15-Metallacrown-5. Inorg. Chem. 49, 5190–5201 (2010). https://doi.org/10.1021/ic100315u

    Article  CAS  PubMed  Google Scholar 

  20. Lim, C.S., Jankolovits, J., Kampf, J.W., Pecoraro, V.L.: Chiral metallacrown supramolecular compartments that template nanochannels: self-assembly and guest absorption. Chem. Asian J. 5, 46–49 (2010). https://doi.org/10.1002/asia.200900612

    Article  CAS  PubMed  Google Scholar 

  21. Jankolovits, J., Lim, C.-S., Mezei, G., Kampf, J.W., Pecoraro, V.L.: Influencing the size and anion selectivity of dimeric Ln 3+ [15-Metallacrown-5] compartments through systematic variation of the host side chains and central metal. Inorg. Chem. 51, 4527–4538 (2012). https://doi.org/10.1021/ic202347j

    Article  CAS  PubMed  Google Scholar 

  22. Tegoni, M., Tropiano, M., Marchiò, L.: Thermodynamics of binding of carboxylates to amphiphilic Eu3+/Cu2+ metallacrown. Dalton Trans. 6705 (2009). https://doi.org/10.1039/b911512a

  23. Sgarlata, C., Giuffrida, A., Trivedi, E.R., Pecoraro, V.L., Arena, G.: Anion encapsulation drives the formation of dimeric Gd III [15-metallacrown-5] 3+ complexes in aqueous solution. Inorg. Chem. 56, 4771–4774 (2017). https://doi.org/10.1021/acs.inorgchem.6b03043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mezei, G., Kampf, J.W., Pan, S., Poeppelmeier, K.R., Watkins, B., Pecoraro, V.L.: Metallacrown-based compartments: selective encapsulation of three isonicotinate anions in non-centrosymmetric solids. Chem. Commun. 1148 (2007). https://doi.org/10.1039/b614024f

  25. Lim, C.-S., Jankolovits, J., Zhao, P., Kampf, J.W., Pecoraro, V.L.: Gd(III)[15-Metallacrown-5] recognition of Chiral α-Amino acid analogues. Inorg. Chem. 50, 4832–4841 (2011). https://doi.org/10.1021/ic102579t

    Article  CAS  PubMed  Google Scholar 

  26. Lin, S., Liu, S.X., Chen, Z., Lin, B.Z., Gao, S.: Synthesis, structure, and magnetism of a ferric 24-Azametallacrown-8 complex. Inorg. Chem. 43, 2222–2224 (2004). https://doi.org/10.1021/ic035145w

    Article  CAS  PubMed  Google Scholar 

  27. Orthmann, S., Lerch, M.: Synthesis and crystal structure of the first Sc-Nb-O-N phases. Zeitschrift für Anorg. und Allg. Chemie. 643, 1391–1396 (2017). https://doi.org/10.1002/zaac.201700129

    Article  CAS  Google Scholar 

  28. Sgarlata, C., Schneider, B.L., Zito, V., Migliore, R., Tegoni, M., Pecoraro, V.L., Arena, G.: Lanthanide identity governs guest-induced dimerization in Ln III [15-MC N(L-pheHA) -5]) 3+ Metallacrowns. Chem. Eur. J. 27, 17669–17675 (2021). https://doi.org/10.1002/chem.202103263

    Article  CAS  PubMed  Google Scholar 

  29. Parac-Vogt, T.N., Pacco, A., Nockemann, P., Yuan, Y.F., Görller-Walrand, C., Binnemans, K.: Mandelohydroxamic acid as ligand for copper(II) 15-metallacrown-5 lanthanide(III) and copper(II) 15-metallacrown-5 uranyl complexes. Eur. J. Inorg. Chem. 1466–1474 (2006). https://doi.org/10.1002/ejic.200501015

  30. Atzeri, C., Marzaroli, V., Quaretti, M., Travis, J.R., Di Bari, L., Zaleski, C.M., Tegoni, M.: Elucidation of 1 H NMR paramagnetic features of heterotrimetallic lanthanide(III)/Manganese(III) 12-MC-4 complexes. Inorg. Chem. 56, 8257–8269 (2017). https://doi.org/10.1021/acs.inorgchem.7b00970

    Article  CAS  PubMed  Google Scholar 

  31. Bertini, I., Luchinat, C., Parigi, G., Ravera, E.: Lanthanoids and actinoids: shift and relaxation. In: Solution NMR of Paramagnetic Molecules. pp. 255–276. Elsevier (2017)

    Google Scholar 

  32. Bertini, I., Claudio, L.: Chapter 2 the hyperfine shift. Coord. Chem. Rev. 150, 29–75 (1996). https://doi.org/10.1016/0010-8545(96)01242-8

  33. Avram, L., Cohen, Y.: Diffusion NMR of molecular cages and capsules. Chem. Soc. Rev. 44, 586–602 (2015). https://doi.org/10.1039/C4CS00197D

    Article  CAS  PubMed  Google Scholar 

  34. Johnson, C.S.: Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog. Nucl. Magn. Reson. Spectrosc. 34, 203–256 (1999). https://doi.org/10.1016/S0079-6565(99)00003-5

    Article  CAS  Google Scholar 

  35. Macchioni, A., Ciancaleoni, G., Zuccaccia, C., Zuccaccia, D.: Determining accurate molecular sizes in solution through NMR diffusion spectroscopy. Chem. Soc. Rev. 37, 479–489 (2008). https://doi.org/10.1039/B615067P

    Article  CAS  PubMed  Google Scholar 

  36. Zuccaccia, D., Macchioni, A.: An accurate methodology to identify the level of aggregation in solution by PGSE NMR measurements: the case of half-sandwich diamino Ruthenium(II) salts. Organometallics 24, 3476–3486 (2005). https://doi.org/10.1021/om050145k

    Article  CAS  Google Scholar 

  37. Cohen, Y., Avram, L., Frish, L.: Diffusion NMR spectroscopy in supramolecular and combinatorial chemistry: an old parameter—new insights. Angew. Chemie Int. Ed. 44, 520–554 (2005). https://doi.org/10.1002/anie.200300637

    Article  CAS  Google Scholar 

  38. Spernol, A., Wirtz, K.: Zur Mikroreibung in Flüssigkeiten. Zeitschrift für Naturforsch. A. 8, 522–532 (1953). https://doi.org/10.1515/zna-1953-0902

    Article  Google Scholar 

  39. Gierer, A., Wirtz, K.: Molekulare Theorie der Mikroreibung. Zeitschrift für Naturforsch. A. 8, 532–538 (1953). https://doi.org/10.1515/zna-1953-0903

    Article  Google Scholar 

  40. Li, D., Kagan, G., Hopson, R., Williard, P.G.: Formula weight prediction by internal reference diffusion-ordered NMR spectroscopy (DOSY). J. Am. Chem. Soc. 131, 5627–5634 (2009). https://doi.org/10.1021/ja810154u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Perrin, F.: Mouvement Brownien d’un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales. J. Phys. le Radium. 7, 1–11 (1936). https://doi.org/10.1051/jphysrad:01936007010100

  42. Evans, R.: The interpretation of small molecule diffusion coefficients: quantitative use of diffusion-ordered NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 117, 33–69 (2020). https://doi.org/10.1016/j.pnmrs.2019.11.002

    Article  CAS  PubMed  Google Scholar 

  43. Lim, C.-S., Kampf, J.W., Pecoraro, V.L.: Establishing the binding affinity of organic carboxylates to 15-Metallacrown-5 complexes. Inorg. Chem. 48, 5224–5233 (2009). https://doi.org/10.1021/ic9001829

    Article  CAS  PubMed  Google Scholar 

  44. Bertini, I., Luchinat, C., Parigi, G.: Magnetic susceptibility in paramagnetic NMR. Prog. Nucl. Magn. Reson. Spectrosc. 40, 249–273 (2002). https://doi.org/10.1016/S0079-6565(02)00002-X

    Article  CAS  Google Scholar 

  45. Blackburn, O.A., Edkins, R.M., Faulkner, S., Kenwright, A.M., Parker, D., Rogers, N.J., Shuvaev, S.: Electromagnetic susceptibility anisotropy and its importance for paramagnetic NMR and optical spectroscopy in lanthanide coordination chemistry. Dalton Trans. 45, 6782–6800 (2016). https://doi.org/10.1039/C6DT00227G

    Article  CAS  PubMed  Google Scholar 

  46. Di Pietro, S., Piano, S. Lo, Di Bari, L.: Pseudocontact shifts in lanthanide complexes with variable crystal field parameters. Coord. Chem. Rev. 255, 2810–2820 (2011). https://doi.org/10.1016/j.ccr.2011.05.010

  47. Aime, S., Botta, M., Fasano, M., Terreno, E.: Lanthanide(III) chelates for NMR biomedical applications. Chem. Soc. Rev. 27, 19–29 (1998). https://doi.org/10.1039/A827019Z

    Article  CAS  Google Scholar 

  48. Bari, L.D., Pintacuda, G., Salvadori, P., Dickins, R.S., Parker, D.: Effect of axial ligation on the magnetic and electronic properties of lanthanide complexes of octadentate ligands. J. Am. Chem. Soc. 122, 9257–9264 (2000). https://doi.org/10.1021/ja0012568

    Article  CAS  Google Scholar 

  49. Fernández-Fernández, M. del C., Bastida, R., Macías, A., Pérez-Lourido, P., Platas-Iglesias, C., Valencia, L.: Lanthanide(III) complexes with a tetrapyridine pendant-armed macrocyclic ligand: 1 H NMR structural determination in solution, X-ray diffraction, and density-functional theory calculations. Inorg. Chem. 45, 4484–4496 (2006). https://doi.org/10.1021/ic0603508

  50. Valencia, L., Martinez, J., Macías, A., Bastida, R., Carvalho, R.A., Geraldes, C.F.G.C.: X-ray diffraction and 1 H NMR in solution: structural determination of lanthanide complexes of a Py 2 N 6 Ac 4 ligand. Inorg. Chem. 41, 5300–5312 (2002). https://doi.org/10.1021/ic0257017

    Article  CAS  PubMed  Google Scholar 

  51. Di Bari, L., Lelli, M., Pintacuda, G., Pescitelli, G., Marchetti, F., Salvadori, P.: Solution versus solid-state structure of ytterbium heterobimetallic catalysts. J. Am. Chem. Soc. 125, 5549–5558 (2003). https://doi.org/10.1021/ja0297640

    Article  CAS  PubMed  Google Scholar 

  52. Bleaney, B., Dobson, C.M., Levine, B.A., Martin, R.B., Williams, R.J.P., Xavier, A. V.: Origin of lanthanide nuclear magnetic resonance shifts and their uses. J. Chem. Soc. Chem. Commun. 791b (1972). https://doi.org/10.1039/c3972000791b

  53. Ouali, N., Rivera, J.-P., Morgantini, P.-Y., Weber, J., Piguet, C.: The solution structure of homotrimetallic lanthanide helicates investigated with novel model-free multi-centre paramagnetic NMR methodsElectronic supplementary information (ESI) available: tables of structural factors Cikl, Dikl obtained for the model com. Dalton Trans. 3, 1251–1263 (2003). https://doi.org/10.1039/b212352e

    Article  CAS  Google Scholar 

  54. Rigault, S., Piguet, C.: Predictions and assignments of NMR spectra for strongly paramagnetic supramolecular lanthanide complexes: the effect of the “gadolinium break.” J. Am. Chem. Soc. 122, 9304–9305 (2000). https://doi.org/10.1021/ja000958u

    Article  CAS  Google Scholar 

  55. Suturina, E.A., Mason, K., Geraldes, C.F.G.C., Kuprov, I., Parker, D.: Beyond bleaney’s theory: experimental and theoretical analysis of periodic trends in lanthanide-induced chemical shift. Angew. Chemie. 129, 12383–12386 (2017). https://doi.org/10.1002/ange.201706931

    Article  Google Scholar 

  56. Parac-Vogt, T.N., Pacco, A., Nockemann, P., Laurent, S., Muller, R.N., Wickleder, M., Meyer, G., Vander Elst, L., Binnemans, K.: Relaxometric study of copper [15]Metallacrown-5 gadolinium complexes derived from α-aminohydroxamic acids. Chem. Eur. J. 12, 204–210 (2006). https://doi.org/10.1002/chem.200500136

    Article  CAS  Google Scholar 

  57. Pacco, A., Absillis, G., Binnemans, K., Parac-Vogt, T.N.: Copper(II) 15-metallacrown-5 lanthanide(III) complexes derived from l-serine and l-threonine hydroxamic acids. J. Alloys Compd. 451, 38–41 (2008). https://doi.org/10.1016/j.jallcom.2007.04.053

    Article  CAS  Google Scholar 

  58. Seda, S.H., Janczak, J., Lisowski, J.: Synthesis and reactivity of copper(II) metallacrowns with (S)-phenylalanine and 2-picolinehydroxamic acids. Inorganica Chim. Acta. 359, 1055–1063 (2006). https://doi.org/10.1016/j.ica.2005.11.019

    Article  CAS  Google Scholar 

  59. Seda, S.H., Janczak, J., Lisowski, J.: Synthesis and structural characterisation of nickel 15-metallacrown-5 complexes with lanthanide(III) and lead(II) ions: influence of the central metal ion size on the spin state of peripheral nickel(II) ions. Inorg. Chem. Commun. 9, 792–796 (2006). https://doi.org/10.1016/j.inoche.2006.04.026

    Article  CAS  Google Scholar 

  60. Seda, S.H., Janczak, J., Lisowski, J.: Synthesis and structural characterisation of copper(II) 15-metallacrown-5 complexes with Pb II, Hg II, Ag I, Na I and Y III central metal ions. Eur. J. Inorg. Chem. 2007, 3015–3022 (2007). https://doi.org/10.1002/ejic.200600881

    Article  CAS  Google Scholar 

  61. Bertini, I., Luchinat, C.: Chapter 5 magnetic coupled systems. Coord. Chem. Rev. 150, 131–161 (1996). https://doi.org/10.1016/0010-8545(96)01245-3

  62. Bertini, I., Claudio, L.: Chapter 3 relaxation. Coord. Chem. Rev. 150, 77–110 (1996). https://doi.org/10.1016/0010-8545(96)01243-X

  63. Gibney, B.R., Wang, H., Kampf, J.W., Pecoraro, V.L.: Structural evaluation and solution integrity of alkali metal salt complexes of the manganese 12-metallacrown-4 (12-MC-4) structural type. Inorg. Chem. 35, 6184–6193 (1996). https://doi.org/10.1021/ic960371+

    Article  CAS  Google Scholar 

  64. Lah, M.S., Pecoraro, V.L.: Development of metallacrown ethers: a new class of metal clusters. Comments Inorg. Chem. 11, 59–84 (1990). https://doi.org/10.1080/02603599008035819

    Article  CAS  Google Scholar 

  65. Lah, M.S., Pecoraro, V.L.: A functional analogy between crown ethers and metallacrowns. Inorg. Chem. 30, 878–880 (1991). https://doi.org/10.1021/ic00005a002

    Article  CAS  Google Scholar 

  66. Lah, M.S., Pecoraro, V.L.: Isolation and characterization of MnII[MnIII(salicylhydroximate)]4(acetate)2(DMF)6 x 2DMF: an inorganic analog of M2+(12-crown-4). J. Am. Chem. Soc. 111, 7258–7259 (1989). https://doi.org/10.1021/ja00200a054

    Article  CAS  Google Scholar 

  67. Kessisoglou, D.P., Kampf, J., Pecoraro, V.L.: Compositional and geometrical isomers of 15-metallacrowns-5 complexes. Polyhedron 13, 1379–1391 (1994). https://doi.org/10.1016/S0277-5387(00)81704-0

    Article  Google Scholar 

  68. Psomas, G., Stemmler, A.J., Dendrinou-Samara, C., Bodwin, J.J., Schneider, M., Alexiou, M., Kampf, J.W., Kessissoglou, D.P., Pecoraro, V.L.: Preparation of site-differentiated mixed ligand and mixed ligand/mixed metal metallacrowns. Inorg. Chem. 40, 1562–1570 (2001). https://doi.org/10.1021/ic000578+

    Article  CAS  PubMed  Google Scholar 

  69. Jankolovits, J., Lim, C.-S., Kampf, J.W., Pecoraro, V.L.: Disruption of the La(III)[15-Metallacrown-5] cavity through bithiophene dicarboxylate inclusion. Zeitschrift für Naturforsch. B. 65, 263-s314 (2010). https://doi.org/10.1515/znb-2010-0307

    Article  CAS  Google Scholar 

  70. Lim, C., Van Noord, A.C., Kampf, J.W., Pecoraro, V.L.: Assessing guest selectivity within metallacrown host compartments. Eur. J. Inorg. Chem. 1347–1350 (2007). https://doi.org/10.1002/ejic.200700054

  71. Stemmler, A.J., Pecoraro, V.L., Huang, M., Coucouvanis, D.: Syntheses of selected supramolecules. In: Inorganic Syntheses. Department of Chemistry, The Willard H. Dow Chemical Laboratories, University of Michigan, Ann Arbor, MI, USA, pp. 1–74 (2002)

    Google Scholar 

  72. Kurzak, B., Farkas, E., Glowiak, T., Kozlowski, H.: X-Ray and potentiometric studies on a pentanuclear copper(II) complex with β-alaninehydroxamic acid. J. Chem. Soc., Dalt. Trans. 163–167 (1991). https://doi.org/10.1039/DT9910000163

  73. Pecoraro, V.L., Bodwin, J.J., Cutland, A.D.: Formation of chiral solids via a molecular building block approach. J. Solid State Chem. 152, 68–77 (2000). https://doi.org/10.1006/jssc.2000.8670

    Article  CAS  Google Scholar 

  74. Legendziewicz, J., Puchalska, M., Ciunik, Z., Wojciechowski, W.: The new decanuclear copper(II) cluster [Cu5(β-alaha)4Cl2]2·2HCl·15H2O, its structure, spectroscopy and magnetism. Polyhedron 26, 1331–1337 (2007). https://doi.org/10.1016/j.poly.2006.11.002

    Article  CAS  Google Scholar 

  75. Pavlishchuk, A.V., Satska, Y., Kolotilov, S.V., Fritsky, I.: Coordination polymers and oligonuclear systems based on oximate or hydroxamate building blocks: magnetic and sorption properties. Curr. Inorg. Chem. 5, 5–25 (2015). https://doi.org/10.2174/1877944105666150417230637

    Article  CAS  Google Scholar 

  76. Marzaroli, V., Spigolon, G., Lococciolo, G., Quaretti, M., Salviati, C., Kampf, J.W., Licini, G., Marchiò, L., Pecoraro, V.L., Tegoni, M.: Three-dimensional porous architectures based on Mn II/III three-blade paddle wheel metallacryptates. Cryst. Growth Des. 19, 1954–1964 (2019). https://doi.org/10.1021/acs.cgd.8b01921

    Article  CAS  Google Scholar 

  77. Pavlishchuk, A.V., Kolotilov, S.V., Fritsky, I.O., Zeller, M., Addison, A.W., Hunter, A.D.: Structural trends in a series of iso­structural lanthanide-copper metallacrown sulfates (LnIII = Pr, Nd, Sm, Eu, Gd, Dy and Ho): hexa­aqua­penta­kis[[mu]3-glycinehydroxamato(2-)]sulfatopenta­copper(II)lanthanide(III) hepta­aqua­penta­kis­[[mu]3-glycine­hy. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 67, m255–m265 (2011). https://doi.org/10.1107/S0108270111021780

  78. Ostrowska, M., Toporivska, Y., Golenya, I.A., Shova, S., Fritsky, I.O., Pecoraro, V.L., Gumienna-Kontecka, E.: Explaining how α-hydroxamate ligands control the formation of Cu(II)-, Ni(II)-, and Zn(II)-containing metallacrowns. Inorg. Chem. 58, 16642–16659 (2019). https://doi.org/10.1021/acs.inorgchem.9b02724

    Article  CAS  PubMed  Google Scholar 

  79. Marchiò, L., Marchetti, N., Atzeri, C., Borghesani, V., Remelli, M., Tegoni, M.: The peculiar behavior of Picha in the formation of metallacrown complexes with Cu(ii), Ni(ii) and Zn(ii) in aqueous solution. Dalton Trans. 44, 3237–3250 (2015). https://doi.org/10.1039/C4DT03264K

    Article  CAS  PubMed  Google Scholar 

  80. Bacco, D., Bertolasi, V., Dallavalle, F., Galliera, L., Marchetti, N., Marchiò, L., Remelli, M., Tegoni, M.: Metallacrowns of Ni(ii) with α-aminohydroxamic acids in aqueous solution: beyond a 12-MC-4, an unexpected (vacant?) 15-MC-5. Dalt. Trans. 40, 2491–2501 (2011). https://doi.org/10.1039/C0DT00832J

    Article  CAS  Google Scholar 

  81. Stemmler, A.J., Kampf, J.W., Kirk, M.L., Atasi, B.H., Pecoraro, V.L.: The preparation, characterization, and magnetism of copper 15-Metallacrown-5 lanthanide complexes. Inorg. Chem. 38, 2807–2817 (1999). https://doi.org/10.1021/ic9800233

    Article  CAS  PubMed  Google Scholar 

  82. Irving, H., Williams, R.J.P.: Order of stability of metal complexes. Nature 162, 746–747 (1948). https://doi.org/10.1038/162746a0

    Article  CAS  Google Scholar 

  83. Arnold, M., Brown, D.A., Deeg, O., Errington, W., Haase, W., Herlihy, K., Kemp, T.J., Nimir, H., Werner, R.: Hydroxamate-bridged dinuclear nickel complexes as models for urease inhibition. Inorg. Chem. 37, 2920–2925 (1998). https://doi.org/10.1021/ic9711628

    Article  CAS  Google Scholar 

  84. Botos, I., Scapozza, L., Zhang, D., Liotta, L.A., Meyer, E.F.: Batimastat, a potent matrix mealloproteinase inhibitor, exhibits an unexpected mode of binding. Proc. Natl. Acad. Sci. 93, 2749–2754 (1996). https://doi.org/10.1073/pnas.93.7.2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gibney, B.R., Stemmler, A.J., Pilotek, S., Kampf, J.W., Pecoraro, V.L.: Generalizing the metallacrown analogy: ligand variation and solution stability of the VVO 9-metallacrown-3 structure type. Inorg. Chem. 32, 6008–6015 (1993). https://doi.org/10.1021/ic00078a018

    Article  CAS  Google Scholar 

  86. Stemmler, A.J., Barwinski, A., Baldwin, M.J., Young, V., Pecoraro, V.L.: Facile preparation of face differentiated, chiral 15-Metallacrown-5 complexes. J. Am. Chem. Soc. 118, 11962–11963 (1996). https://doi.org/10.1021/ja9622968

    Article  CAS  Google Scholar 

  87. Tegoni, M., Dallavalle, F., Belosi, B., Remelli, M.: Unexpected formation of a copper(ii) 12-metallacrown-4 with (S)-glutamic-γ-hydroxamic acid: a thermodynamic and spectroscopic study in aqueous solution. Dalt. Trans. 4, 1329–1333 (2004). https://doi.org/10.1039/B316607D

    Article  Google Scholar 

  88. Careri, M., Dallavalle, F., Tegoni, M., Zagnoni, I.: Pentacopper(II) 12-metallacrown-4 complexes with α- and β-aminohydroxamic acids in aqueous solution: a reinvestigation. J. Inorg. Biochem. 93, 174–180 (2003). https://doi.org/10.1016/S0162-0134(02)00570-6

    Article  CAS  PubMed  Google Scholar 

  89. Dallavalle, F., Tegoni, M.: Speciation and structure of copper(II) complexes with (S)-phenylalanine- and (S)-tryptophanhydroxamic acids in methanol/water solution: a combined potentiometric, spectrophotometric. CD and ESI-MS study. Polyhedron. 20, 2697–2704 (2001). https://doi.org/10.1016/S0277-5387(01)00886-5

    Article  CAS  Google Scholar 

  90. Gibney, B.R., Kessissoglou, D.P., Kampf, J.W., Pecoraro, V.L.: Copper(II) 12-Metallacrown-4: synthesis, structure, ligand variability, and solution dynamics in the 12-MC-4 structural motif. Inorg. Chem. 33, 4840–4849 (1994). https://doi.org/10.1021/ic00100a006

    Article  CAS  Google Scholar 

  91. Pecoraro, V.L.: Structural characterization of [VO(salicylhydroximate)(CH3OH)]3: applications to the biological chemistry of vanadium(V). Inorganica Chim. Acta. 155, 171–173 (1989). https://doi.org/10.1016/S0020-1693(00)90405-5

    Article  CAS  Google Scholar 

  92. Feher, G., Scovil, H.E.D.: Electron spin relaxation times in gadolinium ethyl sulfate. Phys. Rev. 105, 760–762 (1957). https://doi.org/10.1103/PhysRev.105.760

    Article  CAS  Google Scholar 

  93. Delville, A., Stover, H.D.H., Detellier, C.: Crown ether-cation decomplexation mechanics. Sodium-23 NMR studies of the sodium cation complexes with dibenzo-24-crown-8 and dibenzo-18-crown-6 in nitromethane and acetonitrile. J. Am. Chem. Soc. 109, 7293–7301 (1987). https://doi.org/10.1021/ja00258a008

  94. Lin, J.D., Popov, A.I.: Nuclear magnetic resonance studies of some sodium ion complexes with crown ethers and [2]-cryptands in various solvents. J. Am. Chem. Soc. 103, 3773–3777 (1981). https://doi.org/10.1021/ja00403a026

    Article  CAS  Google Scholar 

  95. Shamsipur, M., Popov, A.I.: Multinuclear NMR study of dibenzo-30-crown-10 complexes with sodium, potassium, and cesium ions in nonaqueous solvents. J. Am. Chem. Soc. 101, 4051–4055 (1979). https://doi.org/10.1021/ja00509a005

    Article  CAS  Google Scholar 

  96. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A. 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Tegoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melegari, M., Tegoni, M. (2022). Aspects of NMR Characterization of Metallacrowns. In: Zaleski, C.M. (eds) Advances in Metallacrown Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-08576-5_2

Download citation

Publish with us

Policies and ethics