Skip to main content

NACA 0012 Aeroacoustic Study Using ANSYSFluent

  • Conference paper
  • First Online:
Proceedings of the 7th Brazilian Technology Symposium (BTSym’21) (BTSym 2021)

Abstract

This article aims to validate a model of aircraft wing profiles for the aeroacoustic and aerodynamic study of the NACA 0012 profile, through numerical simulations using the ANSYS Fluent package. The aerodynamic simulation is validated using the URANS method and the turbulent K-omega SST model for pressure, drag, and lift coefficients based on experiments carried out in NASA’s Langley laboratory. After aerodynamic validation, the acoustic simulation is validated using the acoustic theory of Ffowcs Williams and Hawkings, which is included in the software package. The results point to sound pressure values very close to the values of the experiments carried out at the BANC III conference for the trailing edge at angles of attack from 0 to 6° and frequency ranges from 500 Hz to 5000 Hz. The use of the software proved to be accurate for the proposed model. For more than 6°, the drag coefficient values start to distance themselves from the experimental results due to software limitations in calculating the beginning of detachment at the trailing edge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babisch, W., Ising, H., Gallacher, J.: Health status as a potential effect modifier of the relation between noise annoyance and incidence of ischaemic heart disease. Occup. Environ. Med. 60, 739–745 (2003)

    Article  Google Scholar 

  2. Curle, N.: The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. London Ser. A Math. Phys. Sci. 231(1), 505–514 (1955). https://doi.org/10.1098/rspa.1955.0191

  3. Drela, M.: XFOIL: an analysis and design system for low reynolds number airfoils. In: Mueller, T.J. (ed.) Low Reynolds Number Aerodynamics. Lecture Notes in Engineering, vol. 54, pp. 1–12. Springer, Heidelberg (1989). https://doi.org/10.1007/978-3-642-84010-4_1

    Chapter  Google Scholar 

  4. Fischer, A., Bertagnolio, F., Madsen, H.A.: Improvement of TNO type trailing edge noise models. Eur. J. Mech. B/Fluids 61, 255–262 (2016). https://doi.org/10.1016/j.euromechflu.2016.09.005

    Article  Google Scholar 

  5. Gregory, N., O’Reilly, C.L.: Low-speed aerodynamic characteristics of NACA 0012 aerofoil section, including the effects of upper-surface roughness simulating hoar frost. Rep. Memo 3726(3726), 35 (1970)

    Google Scholar 

  6. Greschner, B., Yu, C., Zheng S., Zhuang, M., Wang, Z.J., Thiele, F.: Knowledge based airfoil aerodynamic and aeroacoustic design. In; AIAA; CEAS Aeroacoustics Conference, no. May, pp. 23–25 (2005). https://doi.org/10.2514/6.2005-2968

  7. Hatakeyama, N., Inoue, O.: Direct numerical simulation of noise from an airfoil in a uniform flow, no. May, pp. 8–10 (2012). https://doi.org/10.2514/6.2006-2504

  8. Heath, S.L., et al.: NASA hybrid wing aircraft aeroacoustic test documentation report (2016). https://doi.org/10.13140/RG.2.1.4234.5847

  9. Jones, L.E., Sandberg, R.D., Sandham, N.D.: Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J. Fluid Mech. 602, 175–207 (2008). https://doi.org/10.1017/S0022112008000864

    Article  Google Scholar 

  10. Ladson, C.L., Hill, S., William, A., Johnson, G.: Pressure distributions from high reynolds number transonic tests of an NACA 0012 airfoil in the langley 0.3-meter transonic cryogenic tunnel. Hampton (1987)

    Google Scholar 

  11. Lighthill, M.J.: On sound generated aerodynamically I. General theory. Proc. R. Soc. London Ser. A Math Phys. Sci. 211(1107), 564–587 (1952). https://doi.org/10.1098/rspa.1952.0060

    Article  Google Scholar 

  12. Lummer, M., Delfs, J.W., Lauke, T.: Simulation of the influence of trailing edge shape. Time (May), 1–11 (2003)

    Google Scholar 

  13. Maschke, C.: Preventive medical limits for chronics traffic expose. Acustica 85, 444–448 (1999)

    Google Scholar 

  14. Mohamed, M.H.: Reduction of the generated aero-acoustics noise of a vertical axis wind turbine using CFD (computational fluid dynamics) techniques. Energy 96, 531–544 (2016). https://doi.org/10.1016/j.energy.2015.12.100

    Article  Google Scholar 

  15. Nguyen, D., Lee S.: Investigation on the accuracy of the TNO model using RANS CFD and XFOIL inputs for airfoil trailing edge noise predictions (2018). https://doi.org/10.2514/6.2018-2811

  16. OACI: International Standards and Recommended Practices. Annex 16: environmental protection, vol. 1. Aircraft noise (2001)

    Google Scholar 

  17. Palhares, M.Q.: Avaliação numérica da influência de um mecanismo passivo de controle de arrasto sobre a aerodinâmica e a aeroacústica do corpo de ahmed com traseira quadrada em escala industriaL. UFMG (2019)

    Google Scholar 

  18. Quehl, J., Basner, M.: Annoyance from nocturnal aircraft noise exposure: laboratory and field specific dose-response curves. Environ. Psicol. 2692, 127–140 (2006)

    Google Scholar 

  19. Sandberg, R.D., Sandham, N.D.: Direct numerical simulation of turbulent flow past a trailing edge and the associated noise generation. J. Fluid Mech. 596, 353–385 (2008). https://doi.org/10.1017/S0022112007009561

    Article  Google Scholar 

  20. Scatolini, F., Alves, C.J.P.: Análise do ruído de fundo no entorno de aeroportos urbanos em cidades brasileiras, Aeroporto de Congonhas, São Paulo. Rev. Saude Publica (2016)

    Google Scholar 

  21. Stalnov, O., Paruchuri, C., Joseph, P.: Prediction of broadband trailing-edge noise based on blake model and amiet theory. (June), 1–19 (2015). https://doi.org/10.2514/6.2015-2526

  22. Airfoil Tools: Airfoil NACA (2020). http://airfoiltools.com/

  23. Williams, J.E.F., Hall, L.H.: Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane. J. Fluid Mech. 40(4), 657–670 (1970). https://doi.org/10.1017/S0022112070000368

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Cortez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cortez, D., de Souza Papini, G. (2022). NACA 0012 Aeroacoustic Study Using ANSYSFluent. In: Iano, Y., Saotome, O., Kemper Vásquez, G.L., Cotrim Pezzuto, C., Arthur, R., Gomes de Oliveira, G. (eds) Proceedings of the 7th Brazilian Technology Symposium (BTSym’21). BTSym 2021. Smart Innovation, Systems and Technologies, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-031-08545-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08545-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08544-4

  • Online ISBN: 978-3-031-08545-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics