Skip to main content

A Strategy of Potential Fields and Neural Networks in the Control of an Autonomous Vehicle Within Dangerous Environments

  • Conference paper
  • First Online:
Proceedings of the 7th Brazilian Technology Symposium (BTSym’21) (BTSym 2021)

Abstract

This article focuses on the development of an autonomous navigation system by generating real-time 3D maps of different urban environments with different properties within simulation software. This system used the Pioneer 3-DX vehicle, a LiDAR sensor, GPS, and a gyroscope. For the elaboration of the trajectory, the mathematical tool of artificial potential fields was used, which will generate an attractive field to a dynamic goal identified by the robot and repulsive to the obstacles present in the environment, recognized with great precision thanks to the use of a neural network. The topology neural network 8–16–32 was developed using forward propagation, reverse propagation, and gradient descent algorithms. By combining the tools of potential fields and neural networks, a path was traced through which the robotic system will be able to move freely under an off-center point kinematic control algorithm. Finally, a 3D map of the environment was obtained to provide information on the morphology and most outstanding characteristics of the deployment environment to users who use the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rotrix África industries CC. Irrigation Systems. https://www.rotrixafrica.co.za/irrigation-systems/. Accessed 21 Oct 2021

  2. Mori, B.: Diseño de un vehículo aéreo-terrestre no tripulado con autonomía de funcionamiento de larga duración orientado a operaciones de búsqueda y rescate [publication in Spanish]. Bachelor’s thesis. Pontificia Universidad Católica del Perú, Lima, Perú (2020)

    Google Scholar 

  3. Peskoe-Yang, L.: Paris Fighters used this remote-controlled robot to extinguish the Notre Dame blaze (2019). https://spectrum.ieee.org/automaton/robotics/industrial-robots/colossus-the-firefighting-robot-that-helped-save-notre-dame. Accessed 21 Oct 2021

  4. Montiel, O., Orozco-Rosas, U., Sepulveda, R.: Path planning for mobile robots using Bacterial Potential Field for avoiding static and dynamic obstacles. Expert Syst. Appl. 42, 5177–5191 (2015). https://doi.org/10.1016/j.eswa.2015.02.033

    Article  Google Scholar 

  5. Guerra, M., Efimov, D., Zheng, G., Perruquetti, W.: Avoiding local minima in the potential field method using input-to-state stability. Control. Eng. Pract. 55, 174–184 (2016). https://doi.org/10.1016/j.conengprac.2016.07.008

    Article  Google Scholar 

  6. Mújica, D., Luna, A., de Jesús, J., Carvajal, B.: Noise gradient strategy for an enhanced hybrid convolutional-recurrent deep network to control a self-driving vehicle. Appl. Soft Comput. 92, 106258 (2020). https://doi.org/10.1016/j.asoc.2020.106258

    Article  Google Scholar 

  7. Du, S., Guo, H., Simpson, A.: Self-driving car steering angle prediction based on image recognition. arXiv preprint (2019). https://arxiv.org/pdf/1912.05440. Accessed 21 Oct 2021

  8. Alvarez, I.: Pérdidas de inserción para diferentes materiales y árboles. Bachellor’s tesis [publication in Spanish]. Universidad Autónoma de Madrid, Madrid, Spain (2013)

    Google Scholar 

  9. Do, T.D., Duong, M.T., Dang, Q.V., Le, M.H.: Real-time self-driving car navigation using deep neural network. In: 2018 4th International Conference on Green Technology and Sustainable Development (GTSD). IEEE, Ho Chi Minh, Vietnam, pp. 7–12 (2018)https://doi.org/10.1109/GTSD.2018.8595590

  10. Kumar, G.A., Lee, J.H., Hwang, J., Park, J., Youn, S.H., Kwon, S.: LiDAR and camera fusion approach for object distance estimation in self-driving vehicles. Symmetry 12(2), 324 (2020). https://doi.org/10.3390/sym12020324

    Article  Google Scholar 

  11. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings 1985 IEEE International Conference on Robotics and Automation. IEEE, United States, pp. 500–505 (1985) https://doi.org/10.1109/ROBOT.1985.1087247

  12. Ruiz, J.: Estudio para el desarrollo de un prototipo de mapeo 3D en espacios peligrosos [publication in Spanish]. Bachellor’s tesis, Unidades tecnológicas de Santander, Santander, Colombia (2020). http://repositorio.uts.edu.co:8080/xmlui/handle/123456789/3582. Accessed 21 Oct 2021

  13. López, R., Fernandez, J., Fernández, J.: Las redes neuronales artificiales [publication in Spanish]. (1st ed.). Netbiblo, La Coruna, Spain (2008)

    Google Scholar 

  14. Zou, F., Shen, L., Jie, Z., Zhang, W., Liu, W.: A sufficient condition for convergences of adam and rmsprop. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11127–11135 (2019). https://arxiv.org/pdf/1811.09358v3.pdf. Accessed 21 Oct 2021

  15. Calandín, L.: Modelado cinemático y control de robots móviles con ruedas. Doctoral dissertation [publication in Spanish], Universidad Politécnica de Valencia, Valencia, Spain (2006). https://riunet.upv.es/bitstream/handle/10251/1840/tesisUPV2519.pd. Accessed 21 Oct 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Vinces .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chávez, L., Cortez, A., Vinces, L. (2022). A Strategy of Potential Fields and Neural Networks in the Control of an Autonomous Vehicle Within Dangerous Environments. In: Iano, Y., Saotome, O., Kemper Vásquez, G.L., Cotrim Pezzuto, C., Arthur, R., Gomes de Oliveira, G. (eds) Proceedings of the 7th Brazilian Technology Symposium (BTSym’21). BTSym 2021. Smart Innovation, Systems and Technologies, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-031-08545-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08545-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08544-4

  • Online ISBN: 978-3-031-08545-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics