Skip to main content

A Simple Approach for Short-Term Hydrothermal Self Scheduling for Generation Companies in Restructured Power System

  • Conference paper
  • First Online:
Proceedings of the 7th Brazilian Technology Symposium (BTSym’21) (BTSym 2021)

Abstract

A methodology for solving profit-based short-term hydrothermal self-scheduling (SHTSS) in a restructured power system is discussed in this paper. The idea behind hydrothermal scheduling is to minimize the fuel cost by considering the legal system constraints. The SHTSS problem is solved by an intelligent algorithm, namely Improved Teaching Learning-Based Optimization (ITLBO) approach, which has a minimum number of parameters. The proposed ITLBO algorithm has three dynamic optimizing phases: teacher phase, learner phase, and feedback phase. The feedback phase eliminates the local optimum solutions and moves towards the best optimal solution with a lesser number of iterations. This algorithm permits precise modeling for the solution of the non-linear and non-convex problem of SHTSS. Numerical limitations were carried out for two cases wherein the first case has a power producer with four hydro and three thermal units with a 24-h time horizon, and the second one has a power producer with four hydro and eleven thermal units for 24 h. The simulation results of hourly water discharge. Hydro and thermal power generation, fuel cost, revenue, and profits are presented. A comparison has also been made in order to demonstrate the performance of the proposed approach in evolving the improved profits of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wood, A.J., Wollenberg, B.F.: Power Generation, Operation, and Control, vol. 1. Wiley, Hoboken (1996)

    Google Scholar 

  2. Shahidehpour, M., Yamin, H., Li, Z.: Market Operations in Electric Power Systems : Forecasting, Scheduling, and Risk Management, vol. 9. Wiley-IEEE Press (2002)

    Google Scholar 

  3. Shahidehpour, M., Alomoush, M.: Restructured Electrical Power Systems, Operation, Trading, and Volatility. Wiley, New York (2000)

    Google Scholar 

  4. El-Hawary, M.E., Christensen, G.S.: Optimal Economic Operation of Electric Power Systems. Academic Press, New York (1979)

    Google Scholar 

  5. Li, C., Jap, P.J., Streiffert, D.L.: Implementation of network flow programming to the hydrothermal coordination in an energy management system. IEEE Trans. Power Syst. 8(3), 1045–1053 (1993). https://doi.org/10.1109/59.260895

    Article  Google Scholar 

  6. Johannesen, A., Gjelsvik, A., Fosso, O.B., Flatabo, N.: Optimal short term hydro scheduling including security constraints. IEEE Trans. Power Syst. 6(2), 576–583 (1991). https://doi.org/10.1109/59.76700

    Article  Google Scholar 

  7. Li, T., Shahidehpour, M.: Price-based unit commitment: a case of Lagrangian relaxation versus mixed integer programming. IEEE Trans. Power Syst. 20(4), 2015–2025 (2005). https://doi.org/10.1109/TPWRS.2005.857391

    Article  Google Scholar 

  8. Pérez-Díaz, J.I., Wilhelmi, J.R., Sánchez-Fernández, J.Á.: Short-term operation scheduling of a hydropower plant in the day-ahead electricity market. Electr. Power Syst. Res. 80(12), 1535–1542 (2010). https://doi.org/10.1016/j.epsr.2010.06.017

    Article  Google Scholar 

  9. Ferrero, R.W., Rivera, J.F., Shahidehpour, S.M.: A dynamic programming two-stage algorithm for long-term hydrothermal scheduling of multireservoir systems. IEEE Trans. Power Syst. 13(4), 1534–1540 (1998). https://doi.org/10.1109/59.736302

    Article  Google Scholar 

  10. Guan, X., Luh, P.B., Zhang, L.: Nonlinear approximation method in Lagrangian relaxation-based algorithms for hydrothermal scheduling. IEEE Trans Power Syst 10(2), 772–778 (1995). https://doi.org/10.1109/59.387916

    Article  Google Scholar 

  11. Ngundam, J.M., Kenfack, F., Tatietse, T.T.: Optimal scheduling of large scale hydro thermal power system using the Lagrangian relaxation technique. Int. J. Electr. Power Energy Syst. 22, 237–245 (2000). https://doi.org/10.1016/S0142-0615(99)00054-X

    Article  Google Scholar 

  12. Al-Agtash, S.: Hydrothermal scheduling by augmented Lagrangian: consideration of transmission constraints and pumped-storage units. IEEE Trans. Power Syst. 16(4), 750–756 (2001). https://doi.org/10.1109/59.962422

    Article  Google Scholar 

  13. Yan, H., Luh, P.B., Zhang, L.: Scheduling of hydrothermal power systems using the augmented Lagrangian decomposition and coordination technique. In: Proceedings of 1994 American Control Conference - ACC 1994, vol. 2, pp 1558–1562 (1994)

    Google Scholar 

  14. Sifuentes, W.S., Vargas, A.: Hydrothermal scheduling using benders decomposition: accelerating techniques. IEEE Trans. Power Syst. 22(3), 1351–1359 (2007). https://doi.org/10.1109/TPWRS.2007.901751

    Article  Google Scholar 

  15. Mohan, M.R., Kuppusamy, K., Khan, M.A.: Short-term hydrothermal scheduling of power systems with a pumped hydro plant using the local variation approach. Electr. Power Syst. Res. 27(2), 153–159 (1993). https://doi.org/10.1016/0378-7796(93)90040-L

    Article  Google Scholar 

  16. Mohan, M.R., Kuppusamy, K., Khan, M.A.: Optimal short-term hydrothermal scheduling using decomposition approach and linear programming method. Int. J. Electr. Power Energy Syst. 14(1), 39–44 (1992). https://doi.org/10.1016/0142-0615(92)90007-V

    Article  Google Scholar 

  17. Orero, S.O., Irving, M.R.: A genetic algorithm modelling framework and solution technique for short term optimal hydrothermal scheduling. IEEE Trans. Power Syst. 13(2), 501–518 (1998). https://doi.org/10.1109/59.667375

    Article  Google Scholar 

  18. Sinha, N., Chakrabarti, R., Chattopadhyay, P.K.: Fast evolutionary programming techniques for short-term hydrothermal scheduling. IEEE Trans. Power Syst. 18(1), 214–220 (2003). https://doi.org/10.1109/TPWRS.2002.807053

    Article  Google Scholar 

  19. Lakshminarasimman, L., Subramanian, S.: Short-term scheduling of hydrothermal power system with cascaded reservoirs by using modified differential evolution. IEE Proc.-Gener. Transm. Distrib. 153, 693–700 (2006). https://doi.org/10.1049/ip-gtd:20050407

    Article  Google Scholar 

  20. Sutradhar, S., Choudhury, N.B.D., Sinha, N.: Transmission constraint modeling in hydrothermal scheduling using AC load flow model under deregulated environment. In: Proceedings of WSEAS Transactions on Power Systems, vol. 13, pp. 188–199 (2018)

    Google Scholar 

  21. Soroudi, A.: Robust optimization based self scheduling of hydro-thermal Genco in smart grids. Energy 61, 262–271 (2013). https://doi.org/10.1016/j.energy.2013.09.014

    Article  Google Scholar 

  22. Kumar, J.V., Kumar, D.V., Edukondalu, K.: Strategic bidding using fuzzy adaptive gravitational search algorithm in a pool based electricity market. Appl. Soft. Comput. 13, 2445–2455 (2013). https://doi.org/10.1016/j.asoc.2012.12.003

    Article  Google Scholar 

  23. Abido, M.A.: Multiobjective evolutionary algorithms for electric power dispatch problem. IEEE Trans. Evol. Comput. 10(3), 315–329 (2006). https://doi.org/10.1109/TEVC.2005.857073

    Article  Google Scholar 

  24. Liao X, Zhou J, Zhang R, Zhang Y (2012) An adaptive artificial bee colony algorithm for long-term economic dispatch in cascaded hydropower systems. Int J Electr Power Energy Syst 43(1):1340–1345. https://doi.org/10.1016/j.ijepes.2012.04.009

  25. Zhang R, Zhou J, Ouyang S, Wang X, Zhang H (2013) Optimal operation of multi-reservoir system by multi-elite guide particle swarm optimization. Int J Electr Power Energy Syst 48:58–68. https://doi.org/10.1016/j.ijepes.2012.11.031

  26. Chen, P.: Pumped-storage scheduling using evolutionary particle swarm optimization. IEEE Trans. Energy Convers 23(1), 294–301 (2008). https://doi.org/10.1109/TEC.2007.914312

    Article  Google Scholar 

  27. Manzanedo, F., Castro, J.L., Perez-Donsion, M.: Application of evolutionary techniques to short-term optimization of hydrothermal systems. In: PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409), vol. 3, pp. 1539–1544 (2000)

    Google Scholar 

  28. Palacio, N.J.O., Almeida, K.C., Zurn, H.H.: Short term hydrothermal scheduling under bilateral contracts. In: 2001 IEEE Porto Power Tech Proceedings (Cat. No.01EX502), vol. 1, p. 6 (2001)

    Google Scholar 

  29. Padmini, S., Jegatheesan, R., Thayyil, D.: A novel method for solving multi-objective hydrothermal unit commitment and sheduling for GENCO Using hybrid LR-EP technique. Procedia Comput. Sci. 57, 258–268 (2015). https://doi.org/10.1016/j.procs.2015.07.480

    Article  Google Scholar 

  30. Roy, P.K.: Teaching learning-based optimization for short-term hydrothermal scheduling problem considering valve point effect and prohibited dis-charge constraint. Int. J. Electr. Power Energy Syst. 53(1), 10–19 (2013)

    Article  Google Scholar 

  31. Rao, R.V., Patel, V.: An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. Int. J. Indust. Eng. 3, 535–560 (2012)

    Google Scholar 

  32. Rao, R.V., Savsani, V.J., Balic, J.: Teaching–learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems. Eng. Optim. 44(12), 1447–1462 (2012). https://doi.org/10.1080/0305215X.2011.652103

    Article  Google Scholar 

  33. Venkata Rao, R., Patel, V.: An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Sci. Iran 20, 710–720 (2013). https://doi.org/10.1016/j.scient.2012.12.005

    Article  Google Scholar 

  34. Yu, K., Wang, X., Wang, Z.: An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems. J. Intell. Manuf. 27(4), 831–843 (2014). https://doi.org/10.1007/s10845-014-0918-3

    Article  Google Scholar 

  35. Niu, Q., Zhang, H., Li, K.: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models. Int J Hydrogen Energy 39, 3837–3854 (2014). https://doi.org/10.1016/j.ijhydene.2013.12.110

    Article  Google Scholar 

  36. Niknam, T., Azizipanah-Abarghooee, R., Aghaei, J.: A new modified teaching-learning algorithm for reserve constrained dynamic economic dispatch. IEEE Trans. Power Syst. 28(2), 749–763 (2013). https://doi.org/10.1109/TPWRS.2012.2208273

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Thiagarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thiagarajan, Y., Pasupulati, B., de Oliveira, G.G., Iano, Y., Vaz, G.C. (2022). A Simple Approach for Short-Term Hydrothermal Self Scheduling for Generation Companies in Restructured Power System. In: Iano, Y., Saotome, O., Kemper Vásquez, G.L., Cotrim Pezzuto, C., Arthur, R., Gomes de Oliveira, G. (eds) Proceedings of the 7th Brazilian Technology Symposium (BTSym’21). BTSym 2021. Smart Innovation, Systems and Technologies, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-031-08545-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08545-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08544-4

  • Online ISBN: 978-3-031-08545-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics