Skip to main content

Explainable Online Lane Change Predictions on a Digital Twin with a Layer Normalized LSTM and Layer-wise Relevance Propagation

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelligence (IEA/AIE 2022)

Abstract

Artificial Intelligence and Digital Twins play an integral role in driving innovation in the domain of intelligent driving. Long short-term memory (LSTM) is a leading driver in the field of lane change prediction for manoeuvre anticipation. However, the decision-making process of such models is complex and non-transparent, hence reducing the trustworthiness of the smart solution. This work presents an innovative approach and a technical implementation for explaining lane change predictions of layer normalized LSTMs using Layer-wise Relevance Propagation (LRP). The core implementation includes consuming live data from a digital twin on a German highway, live predictions and explanations of lane changes by extending LRP to layer normalized LSTMs, and an interface for communicating and explaining the predictions to a human user. We aim to demonstrate faithful, understandable, and adaptable explanations of lane change prediction to increase the adoption and trustworthiness of AI systems that involve humans. Our research also emphases that explainability and state-of-the-art performance of ML models for manoeuvre anticipation go hand in hand without negatively affecting predictive effectiveness.

This research was co-funded by the Bavarian Ministry of Economic Affairs, Regional Development and Energy, project Dependable AI, IBM Deutschland GmbH, and IBM Research, and was carried out within the Center for AI jointly founded by IBM and fortiss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Step (2) in Fig. 1 is called the copy LRP rule. The copy LRP rule is a particular case of the LRP-\(\epsilon \) Rule, where one lower-level node and \(n\) upper-layer nodes exist, the weights are set to one, the bias is zero, and the activation function is linear.

References

  1. Alber, M., et al.: Innvestigate neural networks! J. Mach. Learn. Res. 20(93), 1–8 (2019). http://jmlr.org/papers/v20/18-540.html

  2. Krämmer, A., Christoph Schöller, D.G., Knoll, A.: Providentia - a large scale sensing system for the assistance of autonomous vehicles. In: Robotics: Science and Systems (RSS), Workshop on Scene and Situation Understanding for Autonomous Driving (2019). https://sites.google.com/view/uad2019/accepted-posters

  3. Arras, L., et al.: Explaining and Interpreting LSTMs, pp. 211–238. International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_11. https://doi.org/10.1007/978-3-030-28954-6_11

  4. Arras, L., Montavon, G., Müller, K., Samek, W.: Explaining recurrent neural network predictions in sentiment analysis. CoRR (2017). http://arxiv.org/abs/1706.07206

  5. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization (2016)

    Google Scholar 

  6. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLOS ONE 10(7), 1–46 (2015). https://doi.org/10.1371/journal.pone.0130140. https://doi.org/10.1371/journal.pone.0130140

  7. Chen, Y., Dong, C., Palanisamy, P., Mudalige, P., Muelling, K., Dolan, J.M.: Attention-based hierarchical deep reinforcement learning for lane change behaviors in autonomous driving. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1326–1334 (2019). https://doi.org/10.1109/CVPRW.2019.00172

  8. Dang, H.Q., Fürnkranz, J., Biedermann, A., Hoepfl, M.: Time-to-lane-change prediction with deep learning. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–7 (2017). https://doi.org/10.1109/ITSC.2017.8317674

  9. El Marai, O., Taleb, T., Song, J.: Roads infrastructure digital twin: a step toward smarter cities realization. IEEE Network 35(2), 136–143 (2020)

    Article  Google Scholar 

  10. Gallitz, O., De Candido, O., Botsch, M., Melz, R., Utschick, W.: Interpretable machine learning structure for an early prediction of lane changes. In: Farkaš, I., Masulli, P., Wermter, S. (eds.) ICANN 2020. LNCS, vol. 12396, pp. 337–349. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61609-0_27

    Chapter  Google Scholar 

  11. Gallitz, O., De Candido, O., Botsch, M., Utschick, W.: Interpretable feature generation using deep neural networks and its application to lane change detection. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3405–3411. IEEE (2019)

    Google Scholar 

  12. Guillemot, M., Heusele, C., Korichi, R., Schnebert, S., Chen, L.: Breaking batch normalization for better explainability of deep neural networks through layer-wise relevance propagation. CoRR (2020). https://arxiv.org/abs/2002.11018

  13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput., 1735–80, December 1997. https://doi.org/10.1162/neco.1997.9.8.1735

  14. Hui, L.Y.W., Binder, A.: BatchNorm decomposition for deep neural network interpretation. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019. LNCS, vol. 11507, pp. 280–291. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20518-8_24

    Chapter  Google Scholar 

  15. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR (2015). http://arxiv.org/abs/1502.03167

  16. Khan, M.Q., Lee, S.: A comprehensive survey of driving monitoring and assistance systems. Sensors 19(11) (2019). https://doi.org/10.3390/s19112574. https://www.mdpi.com/1424-8220/19/11/2574

  17. Kumar, S.A.P., Madhumathi, R., Chelliah, P.R., Tao, L., Wang, S.: A novel digital twin-centric approach for driver intention prediction and traffic congestion avoidance. J. Reliable Intell. Environ. 4(4), 199–209 (2018). https://doi.org/10.1007/s40860-018-0069-y

    Article  Google Scholar 

  18. Patel, S., Griffin, B., Kusano, K., Corso, J.J.: Predicting future lane changes of other highway vehicles using RNN-based deep models. CoRR (2018). http://arxiv.org/abs/1801.04340v1

  19. Schwalbe, G., Finzel, B.: Xai method properties: a (meta-)study. ArXiv abs/2105.07190 (2021)

    Google Scholar 

  20. Steyn, W.J., Broekman, A.: Development of a digital twin of a local road network: a case study. J. Testing Eval. 51(1) (2021)

    Google Scholar 

  21. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. CoRR (2017). http://arxiv.org/abs/1703.01365

  22. Tang, J., Liu, F., Zhang, W., Ke, R., Zou, Y.: Lane-changes prediction based on adaptive fuzzy neural network. Expert Syst. Appl., 452–463 (2018). https://doi.org/10.1016/j.eswa.2017.09.025

  23. Thevendran, H., Nagendran, A., Hydher, H., Bandara, A., Oruthota, U.: Deep learning and computer vision for IoT based intelligent driver assistant system. In: 2021 10th International Conference on Information and Automation for Sustainability (ICIAfS), pp. 340–345 (2021). https://doi.org/10.1109/ICIAfS52090.2021.9605823

  24. Xing, Y., et al.: Driver lane change intention inference for intelligent vehicles: framework, survey, and challenges. IEEE Trans. Veh. Technol., 1, March 2019. https://doi.org/10.1109/TVT.2019.2903299

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Wehner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wehner, C., Powlesland, F., Altakrouri, B., Schmid, U. (2022). Explainable Online Lane Change Predictions on a Digital Twin with a Layer Normalized LSTM and Layer-wise Relevance Propagation. In: Fujita, H., Fournier-Viger, P., Ali, M., Wang, Y. (eds) Advances and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelligence. IEA/AIE 2022. Lecture Notes in Computer Science(), vol 13343. Springer, Cham. https://doi.org/10.1007/978-3-031-08530-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08530-7_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08529-1

  • Online ISBN: 978-3-031-08530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics