Skip to main content

A Comparative Study of AI Search Methods for Personalised Cancer Therapy Synthesis in COPASI

  • Conference paper
  • First Online:
  • 860 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13196))

Abstract

In recent years, optimisation methods in precision medicine have gained much attention thanks to their ability to tackle relevant problems arising from clinical practice effectively. One of the most compelling challenges in this area is designing computational methods for personalising pharmacological treatments, especially for high-impact diseases, due to the large potential impact on the whole healthcare field. In this work, we address the problem of computing safe and effective personalised therapies for Colorectal Cancer (CRC), one of the deadliest forms of tumour for adult humans. We exploit a recent System Biology Markup Language (SBML) mechanistic model of the tumour growth and of the immune response to two drugs and define a simulation-based, non-linear, constrained optimisation problem for automatically synthesising personalised therapies for any given virtual patient. We present a methodology, proposed in our earlier work, that uses a single tool, namely COPASI, to define and solve the optimisation problem. We extend our previous experimental evaluation of the approach by comparing all optimisation algorithms provided by COPASI and performing an in-depth analysis of the results, which provides new and practical insights on the ability of the different algorithms to solve the problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Audigier, C., et al.: Parameter estimation for personalization of liver tumor radiofrequency ablation. In: Yoshida, H., Näppi, J., Saini, S. (eds.) ABD-MICCAI 2014. LNCS, pp. 3–12. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13692-9_1

    Chapter  Google Scholar 

  2. Balsa-Canto, E., et al.: AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology. Bioinformatics 32(21), 3357–3359 (2016)

    Article  Google Scholar 

  3. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 305–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_11

    Chapter  Google Scholar 

  4. Bogomolov, S., et al.: Planning as model checking in hybrid domains. In: AAAI 2014. AAAI (2014)

    Google Scholar 

  5. Bogomolov, S., et al.: PDDL+ planning with hybrid automata: foundations of translating must behavior. In: ICAPS 2015. AAAI (2015)

    Google Scholar 

  6. Cadoli, M., Mancini, T.: Combining relational algebra, SQL, constraint modelling, and local search. TPLP 7(1–2), 37–65 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Cadoli, M., Mancini, T., Patrizi, F.: SAT as an effective solving technology for constraint problems. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 540–549. Springer, Heidelberg (2006). https://doi.org/10.1007/11875604_61

    Chapter  Google Scholar 

  8. Cassidy, T., Craig, M.: Determinants of combination GM-CSF immunotherapy and oncolytic virotherapy success identified through in silico treatment personalization. PLoS Comput. Biol. 15(11), e1007495 (2019)

    Google Scholar 

  9. Chen, Q., et al.: MILP, pseudo-boolean, and OMT solvers for optimal fault-tolerant placements of relay nodes in mission critical wireless networks. Fundam. Inform. 174(3–4), 229–258 (2020)

    Article  MathSciNet  Google Scholar 

  10. Chen, T., et al.: Optimal dosing of cancer chemotherapy using model predictive control and moving horizon state/parameter estimation. Comput. Methods Programs Biomed. 108(3), 973–983 (2012)

    Article  Google Scholar 

  11. Clarke, E., et al.: Handbook of Model Checking. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-10575-8

    Book  Google Scholar 

  12. Egea, J.A., et al.: MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics. BMC Bioinform. 15(1), 1–9 (2014)

    Article  Google Scholar 

  13. Esposito, M., Picchiami, L.: Intelligent search for personalized cancer therapy synthesis: an experimental comparison. In: RCRA 2021, CEUR W.P., vol. 3065. CEUR (2021)

    Google Scholar 

  14. Esposito, M., Picchiami, L.: Simulation-based synthesis of personalised therapies for colorectal cancer. In: OVERLAY 2021, CEUR W.P., vol. 2987. CEUR (2021)

    Google Scholar 

  15. European Medicines Agency. Reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation (2019). https://www.ema.europa.eu/en/reporting-physiologically-based-pharmacokinetic-pbpk-modelling-simulation. EMA/CHMP/458101/2016

  16. Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning. JAIR 27, 235–297 (2006)

    Article  Google Scholar 

  17. Fritzson, P., Engelson, V.: Modelica—a unified object-oriented language for system modeling and simulation. In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 67–90. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054087

    Chapter  Google Scholar 

  18. Fröhlich, F., et al.: AMICI: high-performance sensitivity analysis for large ordinary differential equation models. Bioinformatics 37(20), 3676–3677 (2021)

    Article  Google Scholar 

  19. Hayes, B., et al.: Residential demand management using individualised demand aware price policies. IEEE Trans. Smart Grid 8(3), 1284–1294 (2017)

    Article  Google Scholar 

  20. Hengartner, M., et al.: Negative affect is unrelated to fluctuations in hormone levels across the menstrual cycle: evidence from a multisite observational study across two successive cycles. J. Psycho. Res. 99, 21–27 (2017)

    Article  Google Scholar 

  21. Hucka, M., et al.: The systems biology markup language (SBML): language specification for level 3 version 2 core. JIB 15(1) (2018)

    Google Scholar 

  22. Jalalimanesh, A., et al.: Simulation-based optimization of radiotherapy: agent-based modeling and reinforcement learning. Math. Comput. Simul. 133, 235–248 (2017)

    Article  MathSciNet  Google Scholar 

  23. Jenner, A.L., et al.: Optimising hydrogel release profiles for viro-immunotherapy using oncolytic adenovirus expressing IL-12 and GM-CSF with immature dendritic cells. Appl. Sci. 10(8), 2872 (2020)

    Article  Google Scholar 

  24. Kaschek, D., et al.: Dynamic modeling, parameter estimation, and uncertainty analysis in R. J. Stat. Softw. 88(1), 1–32 (2019)

    Google Scholar 

  25. Klinger, E., et al.: pyABC: distributed, likelihood-free inference. Bioinformatics 34(20), 3591–3593 (2018)

    Article  Google Scholar 

  26. Kolpakov, F., et al.: BioUML: an integrated environment for systems biology and collaborative analysis of biomedical data. Nucleic Acids Res. 47(W1), W225–W233 (2019)

    Article  Google Scholar 

  27. Lang, P.F., et al.: SBML2Julia: interfacing SBML with efficient nonlinear Julia modelling and solution tools for parameter optimization. arXiv preprint arXiv:2011.02597 (2020)

  28. Le Novère, N., et al.: BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 34(Suppl. 1) (2006)

    Google Scholar 

  29. Lee, C., et al.: COPASI - a complex pathway simulator. Bioinformatics 22(24), 3067–3074 (2006)

    Article  Google Scholar 

  30. Leeners, B., et al.: Lack of associations between female hormone levels and visuospatial working memory, divided attention and cognitive bias across two consecutive menstrual cycles. Front. Behav. Neuro. 11, 120 (2017)

    Article  Google Scholar 

  31. Leeners, B., et al.: Associations between natural physiological and supraphysiological estradiol levels and stress perception. Front. Psycol. 10, 1296 (2019)

    Article  Google Scholar 

  32. Ma, H., et al.: Combination therapy with T cell engager and PD-L1 blockade enhances the antitumor potency of T cells as predicted by a QSP model. J. Immunother. Cancer 8(2) (2020)

    Google Scholar 

  33. Maggioli, F., et al.: SBML2Modelica: integrating biochemical models within open-standard simulation ecosystems. Bioinformatics 36(7), 2165–2172 (2020)

    Article  Google Scholar 

  34. Mancini, T., Cadoli, M.: Detecting and breaking symmetries by reasoning on problem specifications. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI), vol. 3607, pp. 165–181. Springer, Heidelberg (2005). https://doi.org/10.1007/11527862_12

    Chapter  Google Scholar 

  35. Mancini, T., et al.: Evaluating ASP and commercial solvers on the CSPLib. Constraints 13(4), 407–436 (2008)

    Article  MathSciNet  Google Scholar 

  36. Mancini, T., et al.: Combinatorial problem solving over relational databases: view synthesis through constraint-based local search. In: SAC 2012. ACM (2012)

    Google Scholar 

  37. Mancini, T., Mari, F., Massini, A., Melatti, I., Merli, F., Tronci, E.: System level formal verification via model checking driven simulation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 296–312. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_21

    Chapter  Google Scholar 

  38. Mancini, T., et al.: Anytime system level verification via random exhaustive hardware in the loop simulation. In: DSD 2014. IEEE (2014)

    Google Scholar 

  39. Mancini, T., et al.: Demand-aware price policy synthesis and verification services for smart grids. In: SmartGridComm 2014. IEEE (2014)

    Google Scholar 

  40. Mancini, T., et al.: System level formal verification via distributed multi-core hardware in the loop simulation. In: PDP 2014. IEEE (2014)

    Google Scholar 

  41. Mancini, T., Tronci, E., Salvo, I., Mari, F., Massini, A., Melatti, I.: Computing biological model parameters by parallel statistical model checking. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015. LNCS, vol. 9044, pp. 542–554. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16480-9_52

    Chapter  Google Scholar 

  42. Mancini, T., et al.: SyLVaaS: system level formal verification as a service. In: PDP 2015. IEEE (2015)

    Google Scholar 

  43. Mancini, T., et al.: User flexibility aware price policy synthesis for smart grids. In: DSD 2015. IEEE (2015)

    Google Scholar 

  44. Mancini, T., et al.: Anytime system level verification via parallel random exhaustive hardware in the loop simulation. Microprocess. Microsyst. 41, 12–28 (2016)

    Article  Google Scholar 

  45. Mancini, T., et al.: SyLVaaS: system level formal verification as a service. Fundam. Inform. 149(1–2), 101–132 (2016)

    Article  MathSciNet  Google Scholar 

  46. Mancini, T., et al.: On minimising the maximum expected verification time. Inf. Proc. Lett. 122, 8–16 (2017)

    Article  MathSciNet  Google Scholar 

  47. Mancini, T., et al.: Computing personalised treatments through in silico clinical trials. A case study on downregulation in assisted reproduction. In: RCRA 2018, CEUR W.P., vol. 2271. CEUR (2018)

    Google Scholar 

  48. Mancini, T., Mari, F., Melatti, I., Salvo, I., Tronci, E.: An efficient algorithm for network vulnerability analysis under malicious attacks. In: Ceci, M., Japkowicz, N., Liu, J., Papadopoulos, G.A., Raś, Z.W. (eds.) ISMIS 2018. LNCS (LNAI), vol. 11177, pp. 302–312. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01851-1_29

    Chapter  Google Scholar 

  49. Mancini, T., et al.: Optimal fault-tolerant placement of relay nodes in a mission critical wireless network. In: RCRA 2018, CEUR W.P., vol. 2271. CEUR (2018)

    Google Scholar 

  50. Mancini, T., et al.: Parallel statistical model checking for safety verification in smart grids. In: SmartGridComm 2018. IEEE (2018)

    Google Scholar 

  51. Mancini, T., et al.: Any-horizon uniform random sampling and enumeration of constrained scenarios for simulation-based formal verification. IEEE TSE (2021)

    Google Scholar 

  52. Melatti, I., et al.: A two-layer near-optimal strategy for substation constraint management via home batteries. IEEE Trans. Ind. Electron. 69, 8566–8578 (2021)

    Article  Google Scholar 

  53. Noman, N., Moscato, P.: Designing optimal combination therapy for personalised glioma treatment. Memetic Comput. 12(4), 317–329 (2020)

    Article  Google Scholar 

  54. Raissi, M., et al.: On parameter estimation approaches for predicting disease transmission through optimization, deep learning and statistical inference methods. Lett. Biomathematics 6(2), 1–26 (2019)

    Article  MathSciNet  Google Scholar 

  55. Raue, A., et al.: Data2dynamics: a modeling environment tailored to parameter estimation in dynamical systems. Bioinformatics 31(21), 3558–3560 (2015)

    Article  Google Scholar 

  56. Rossi, F., et al. (eds.): Handbook of Constraint Programming. Elsevier (2006)

    Google Scholar 

  57. Sánchez, O.D., et al.: Parameter estimation of a meal glucose-insulin model for TIDM patients from therapy historical data. IET Syst. Biol. 13(1), 8–15 (2019)

    Article  Google Scholar 

  58. Schälte, Y., et al.: Evaluation of derivative-free optimizers for parameter estimation in systems biology. IFAC-PapersOnLine 51(19), 98–101 (2018)

    Article  Google Scholar 

  59. Schmiester, L., et al.: Efficient gradient-based parameter estimation for dynamic models using qualitative data. Bioinformatics (2021). https://doi.org/10.1093/bioinformatics/btab512

  60. Schmiester, L., et al.: PEtab-interoperable specification of parameter estimation problems in systems biology. PLoS Comput. Biol. 17(1), e1008646 (2021)

    Google Scholar 

  61. Schmucker, R., et al.: Combination treatment optimization using a pan-cancer pathway model. bioRxiv (2020)

    Google Scholar 

  62. Schwartz, L.H., et al.: RECIST 1.1—update and clarification: from the RECIST committee. Eur. J. Cancer 62, 132–137 (2016)

    Article  Google Scholar 

  63. Sinisi, S., et al.: Complete populations of virtual patients for in silico clinical trials. Bioinformatics 36(22–23), 5465–5472 (2020)

    Google Scholar 

  64. Sinisi, S., et al.: Optimal personalised treatment computation through in silico clinical trials on patient digital twins. Fundam. Inform. 174(3–4), 283–310 (2020)

    Article  MathSciNet  Google Scholar 

  65. Sinisi, S., et al.: Reconciling interoperability with efficient verification and validation within open source simulation environments. Simul. Model. Pract. Theory 109 (2021)

    Google Scholar 

  66. Somogyi, E., et al.: libRoadRunner: a high performance SBML simulation and analysis library. Bioinformatics 31(20), 3315–3321 (2015)

    Article  Google Scholar 

  67. Stapor, P., et al.: PESTO: parameter estimation toolbox. Bioinformatics 34(4), 705–707 (2018)

    Article  Google Scholar 

  68. Tronci, E., et al.: Patient-specific models from inter-patient biological models and clinical records. In: FMCAD 2014. IEEE (2014)

    Google Scholar 

  69. U.S.A. Food and Drug Administration. Physiologically based pharmacokinetic analyses - format and content guidance for industry. FDA-2016-D-3969 (2018)

    Google Scholar 

  70. Vallati, M., et al.: Efficient macroscopic urban traffic models for reducing congestion: a PDDL+ planning approach. In: AAAI 2016. AAAI (2016)

    Google Scholar 

  71. Villaverde, A.F., et al.: Benchmarking optimization methods for parameter estimation in large kinetic models. Bioinformatics 35(5), 830–838 (2019)

    Article  Google Scholar 

  72. Yazdani, A., et al.: Systems biology informed deep learning for inferring parameters and hidden dynamics. PLoS Comput. Biol. 16(11), e1007575 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by: Italian Ministry of University and Research under grant “Dipartimenti di eccellenza 2018–2022” of the Department of Computer Science of Sapienza University of Rome. INdAM “GNCS Project 2020”; Sapienza University projects RG11816436BD4F21, RG11916B892E54DB, RP11916B8665242F; Lazio POR FESR projects E84G20000150006, F83G17000830007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Esposito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esposito, M., Picchiami, L. (2022). A Comparative Study of AI Search Methods for Personalised Cancer Therapy Synthesis in COPASI. In: Bandini, S., Gasparini, F., Mascardi, V., Palmonari, M., Vizzari, G. (eds) AIxIA 2021 – Advances in Artificial Intelligence. AIxIA 2021. Lecture Notes in Computer Science(), vol 13196. Springer, Cham. https://doi.org/10.1007/978-3-031-08421-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08421-8_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08420-1

  • Online ISBN: 978-3-031-08421-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics