Skip to main content

Robust Optimization Models For Local Flexibility Characterization of Virtual Power Plants

  • Conference paper
  • First Online:
AIxIA 2021 – Advances in Artificial Intelligence (AIxIA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13196))

  • 839 Accesses

Abstract

A typical Virtual Power Plant (VPP) has a distributed architecture, composed by a central control system and decentralized control units, which coordinates and aggregates local resources. A key aspect of these distributed energy systems is the flexibility offered to the market. This flexibility is considered as the difference between the (partially shiftable) load requested to the system and the energy produced by the local available resources, and it is subject to the uncertainty of the renewable production. This work proposes robust day-ahead optimization models to analyze flexibility of different local resource configurations. For each configuration, we consider a Demand Side Management step to shift the requested load in predefined time windows, based on renewable production forecasts. Moreover, two different objective functions are considered: 1) the cost minimization for the use of available resources; 2) the minimization of the exchange with the external grid (i.e. the market). The models are implemented and tested using real data. We provide a comparative analysis on the expected flexibility and costs that can be exploited by a central system to provide value-added services to the market by synergistically managing different configurations of local resources of a VPP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.enwl.co.uk/lvns.

  2. 2.

    http://www.mercatoelettrico.org/En/Default.aspx.

  3. 3.

    http://dgsaie.mise.gov.it/.

References

  1. Aloini, D., Crisostomi, E., Raugi, M., Rizzo, R.: Optimal power scheduling in a virtual power plant. In: 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, pp. 1–7, December 2011

    Google Scholar 

  2. Bai, H., Miao, S., Ran, X., Ye, C.: Optimal dispatch strategy of a virtual power plant containing battery switch stations in a unified electricity market. Energies 8(3), 2268–2289 (2015). http://www.mdpi.com/1996-1073/8/3/2268

  3. Bianchi, S., De Filippo, A., Magnani, S., Mosaico, G., Silvestro, F.: Virtus project: a scalable aggregation platform for the intelligent virtual management of distributed energy resources. Energies 14(12), 3663 (2021)

    Article  Google Scholar 

  4. De Filippo, A., Lombardi, M., Milano, M.: Non-linear optimization of business models in the electricity market. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 81–97. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33954-2_7

    Chapter  MATH  Google Scholar 

  5. De Filippo, A., Lombardi, M., Milano, M.: User-aware electricity price optimization for the competitive market. Energies 10(9), 1378 (2017)

    Article  Google Scholar 

  6. De Filippo, A., Lombardi, M., Milano, M.: Methods for off-line/on-line optimization under uncertainty. In: IJCAI, pp. 1270–1276 (2018)

    Google Scholar 

  7. De Filippo, A., Lombardi, M., Milano, M.: Off-line and on-line optimization under uncertainty: a case study on energy management. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 100–116. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_8

    Chapter  MATH  Google Scholar 

  8. De Filippo, A., Lombardi, M., Milano, M.: How to tame your anticipatory algorithm. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 1071–1077. AAAI Press (2019)

    Google Scholar 

  9. Espinosa, A., Ochoa, L.: Dissemination document “low voltage networks models and low carbon technology profiles". Technical report. University of Manchester, June 2015

    Google Scholar 

  10. Gamou, S., Yokoyama, R., Ito, K.: Optimal unit sizing of cogeneration systems in consideration of uncertain energy demands as continuous random variables. Energy Convers. Manag. 43(9), 1349–1361 (2002)

    Article  Google Scholar 

  11. Hentenryck, P.V., Bent, R.: Online Stochastic Combinatorial Optimization. The MIT Press, Cambridge (2009)

    Google Scholar 

  12. Jurković, K., Pandšić, H., Kuzle, I.: Review on unit commitment under uncertainty approaches. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1093–1097. IEEE (2015)

    Google Scholar 

  13. Kaplanis, S., Kaplani, E.: A model to predict expected mean and stochastic hourly global solar radiation I(h;nj) values. Renew. Energy 32(8), 1414–1425 (2007)

    Article  Google Scholar 

  14. Lombardi, P., Powalko, M., Rudion, K.: Optimal operation of a virtual power plant. In: Power & Energy Society General Meeting, PES 2009, pp. 1–6. IEEE (2009)

    Google Scholar 

  15. Palensky, P., Dietrich, D.: Demand side management: demand response, intelligent energy systems, and smart loads. IEEE Trans. Ind. Inform. 7(3), 381–388 (2011)

    Article  Google Scholar 

  16. Palma-Behnke, R., Benavides, C., Aranda, E., Llanos, J., Sáez, D.: Energy management system for a renewable based microgrid with a demand side management mechanism. In: 2011 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG), pp. 1–8, April 2011

    Google Scholar 

  17. Reddy, S.S., Sandeep, V., Jung, C.M.: Review of stochastic optimization methods for smart grid. Front. Energy 1–13 (2017)

    Google Scholar 

  18. Zhou, Z., Zhang, J., Liu, P., Li, Z., Georgiadis, M.C., Pistikopoulos, E.N.: A two-stage stochastic programming model for the optimal design of distributed energy systems. Appl. Energy 103, 135–144 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the VIRTUS Project (CCSEB00094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allegra De Filippo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Filippo, A., Lombardi, M., Milano, M. (2022). Robust Optimization Models For Local Flexibility Characterization of Virtual Power Plants. In: Bandini, S., Gasparini, F., Mascardi, V., Palmonari, M., Vizzari, G. (eds) AIxIA 2021 – Advances in Artificial Intelligence. AIxIA 2021. Lecture Notes in Computer Science(), vol 13196. Springer, Cham. https://doi.org/10.1007/978-3-031-08421-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08421-8_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08420-1

  • Online ISBN: 978-3-031-08421-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics