Skip to main content

Image Guidance for Intracranial Surgery with Supervisory-Control Robots

  • Chapter
  • First Online:
Robotics in Neurosurgery

Abstract

The final accuracy of a stereotactic procedure results not only from the intrinsic characteristics of the robotic assistant but also from many other components of the global workflow. It is named “application accuracy” and depends also on the spatial resolution of planning images, the quality of registration algorithms, and the mechanic properties of surgical devices other than the robot.

Moreover, it must be stressed that even a highly accurate stereotactic procedure will not result in an adequate diagnostic yield or in a successful treatment if it is supported by a weak strategy of implantation, not adequate to patient-specific clinical requirements.

The aim of the present chapter is to provide the reader with main concepts at the basis of both strategical and technical aspects in the field of stereotactic implantations assisted by supervisory-control robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 14 December 2022

    Chapter 4 in: J. A. González Martínez, F. Cardinale (eds.), Robotics in Neurosurgery ,

Notes

  1. 1.

    This is not a mistake: a “robotic” procedure is not always “frame-less”!

  2. 2.

    The problem is not different with stereoscopic technologies, where a pair of slightly different 2D images (taken or reconstructed from different points of view) is presented to the user in a way that allows the perception of depth. These images are not really 3D: despite the illusion of three-dimensionality, the user cannot see the hidden face of the objects. Therefore, surgical microscopes, endoscopes, and otoscopes provide the neurosurgeon with a stereoscopic view of the surgical field, and the term 3D should not be considered appropriate even if it is very popular.

  3. 3.

    A patient-to-atlas registration is common when a target is not directly visible in the patient images, as in the case of some DBS procedures. Other types of inter-subject registrations are never performed in surgical planning, but only in research studies registering different subjects to a common template.

  4. 4.

    Non-linear transformations are rarely adopted in the context of intracranial stereotaxic planning.

  5. 5.

    Many and more complex aspects of image registrations should be covered for special processing workflows such as the ones to estimate activations with functional MRI or white matter tracts from diffusion-weighted images datasets, but this is out of the scopes of the present chapter. Here we want to remain in the context of image registrations in the last mile of surgical planning.

  6. 6.

    Differently from image-to-image registrations, an image-to-patient registration includes only the computation of a rigid transformation. In fact, the surgical space is physical, it is not a discretized image space and no interpolation is required.

References

  1. Schweikard A, Ernst F. Introduction. In: Schweikard A, Ernst F, editors. Medical robotics. Springer International Publishing Switzerland; 2015. p. 1–27.

    Chapter  Google Scholar 

  2. Maciunas RJ, Galloway RL, Latimer J. The application accuracy of stereotactic frames. Neurosurgery. 1994;35:682–94.

    Article  CAS  Google Scholar 

  3. Bucholz RD, Sturm CD, Hogan RE. The use of three-dimensional images in stereotactic neurosurgery. In: Gildenberg PL, Tasker RR, editors. Textbook of stereotactic and functional neurosurgery. New York: McGraw-Hill; 1998. p. 337–49.

    Google Scholar 

  4. Lo Russo G, Tassi L, Cossu M, Cardinale F, Mai R, Castana L, et al. Focal cortical resection in malformations of cortical development. Epileptic Disord. 2003;5:S115–23.

    Google Scholar 

  5. Bancaud J. Surgery of epilepsy based on stereotactic investigations—the plan of the SEEG investigation. In: Gillingham F, Gybels J, Hitchcock E, Rossi G, Szikla G, editors. Advanced stereotactic and functional neurosurgery 4. Acta Neurochirurgica Supplementum, vol. 30. Vienna: Springer; 1980. p. 25–34.

    Chapter  Google Scholar 

  6. Cardinale F, Francione S, Gennari L, Citterio A, Sberna M, Tassi L, et al. SUrface-PRojected FLAIR analysis: a novel tool for advanced imaging of epilepsy. World Neurosurg. 2017;98:715–26.

    Article  Google Scholar 

  7. Duncan JS, Winston GP, Koepp MJ, Ourselin S. Brain imaging in the assessment for epilepsy surgery. Lancet Neurol. 2016;4422:1–14.

    Google Scholar 

  8. Focke NK, Bonelli SB, Yogarajah M, Scott C, Symms MR, Duncan JS. Automated normalized FLAIR imaging in MRI-negative patients with refractory focal epilepsy. Epilepsia. 2009;50:1484–90.

    Article  Google Scholar 

  9. Huppertz H-J, Grimm C, Fauser S, Kassubek J, Mader I, Hochmuth A, et al. Enhanced visualization of blurred gray-white matter junctions in focal cortical dysplasia by voxel-based 3D MRI analysis. Epilepsy Res. 2005;67:35–50.

    Article  Google Scholar 

  10. Kassubek J, Huppertz H-J, Spreer J, Schulze-Bonhage A. Detection and localization of focal cortical dysplasia by voxel-based 3-D MRI analysis. Epilepsia. 2002;43:596–602.

    Article  Google Scholar 

  11. Sulc V, Stykel S, Hanson DP, Brinkmann BH, Jones DT, Holmes DR, et al. Statistical SPECT processing in MRI-negative epilepsy surgery. Neurology. 2014;82:932–9.

    Article  Google Scholar 

  12. Wagner J, Weber B, Urbach H, Elger CE, Huppertz H-J. Morphometric MRI analysis improves detection of focal cortical dysplasia type II. Brain. 2011;134:2844–54.

    Article  Google Scholar 

  13. Wang ZI, Jones SE, Jaisani Z, Najm IM, Prayson RA, Burgess RC, et al. Voxel-based morphometric magnetic resonance imaging (MRI) postprocessing in MRI-negative epilepsies. Ann Neurol. 2015;77:1060–75.

    Article  Google Scholar 

  14. Kelly PJ. Stereotactic navigation, Jean Talairach, and I. Neurosurgery. 2004;54:454–64.

    Article  Google Scholar 

  15. Horsley V, Clarke R. The structure and functions of the cerebellum examined by a new method. Brain. 1908;31:45–124.

    Article  Google Scholar 

  16. Chabardès S, Abel TJ, Cardinale F, Kahane P. Commentary: understanding stereoelectroencephalography: what’s next? Neurosurgery. 2017;82:E15–6.

    Article  Google Scholar 

  17. Trébuchon A, Chauvel P. Electrical stimulation for seizure induction and functional mapping in stereoelectroencephalography. J Clin Neurophysiol. 2016;33:511–21.

    Article  Google Scholar 

  18. Trébuchon A, Racilia R, Cardinale F, Lagarde S, McGonigal A, Lo Russo G, et al. Electrical stimulation for seizure induction during SEEG exploration: a useful predictor of post-surgical seizure recurrence? J Neurol Neurosurg Psychiatry. 2021;92:22–6.

    Article  Google Scholar 

  19. Bourdillon P, Apra C, Lévêque M. First clinical use of stereotaxy in humans: the key role of x-ray localization discovered by Gaston Contremoulins. J Neurosurg. 2018;128:932–7.

    Article  Google Scholar 

  20. Spiegel EA, Wycis HT, Marks M, Lee A. Stereotaxic apparatus for operations on the human brain. Science. 1947;106:349–50.

    Article  CAS  Google Scholar 

  21. Spiegel EA, Wycis HT, Thur C. The stereoencephalotome (model III of our stereotaxic apparatus for operations on the human brain). J Neurosurg. 1951;8:452–3.

    Article  CAS  Google Scholar 

  22. Benabid AL, Chabardès S, Seigneuret E. History of stereotactic surgery in France. In: Lozano AM, Gildenberg PL, Tasker RR, editors. Textbook of stereotactic and functional neurosurgery. 2nd ed. Berlin: Springer-Verlag; 2009.

    Google Scholar 

  23. Chauvel P. Contributions of Jean Talairach and Jean Bancaud to epilepsy surgery. In: Lüders HO, Comair YG, editors. Epilepsy surgery. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 35–41.

    Google Scholar 

  24. Szikla G. Target point, target volume, “whole brain” stereotaxis: remarks on some present trends of evolution in stereotactic neurosurgery. In: Gillingham F, Gybels J, Hitchcock E, Rossi G, Szikla G, editors. Advanced stereotactic and functional neurosurgery 4. Acta Neurochirurgica Supplementum, vol. 30. Vienna: Springer; 1980. p. 1–3.

    Chapter  Google Scholar 

  25. Benabid AL, Mitrofanis J, Chabardès S, Seigneuret E, Torres N, Piallat B, et al. Subthalamic nucleus stimulation for Parkinson’s disease. In: Lozano AM, Gildenberg PL, Tasker RR, editors. Textbook of stereotactic and functional neurosurgery. 2nd ed. Berlin: Springer-Verlag; 2009. p. 1603–30.

    Chapter  Google Scholar 

  26. Rachinger W, Grau S, Holtmannspötter M, Herms J, Tonn J, Kreth F. Serial stereotactic biopsy of brainstem lesions in adults improves diagnostic accuracy compared with MRI only. J Neurol Neurosurg Psychiatry. 2009;80:1134–9.

    Article  CAS  Google Scholar 

  27. Zanello M, Roux A, Senova S, Peeters S, Edjlali M, Taauziede-Espariat A, et al. Robot-assisted stereotactic biopsies in 377 consecutive adult patients with supratentorial diffuse gliomas: diagnostic yield, safety and postoperative outcomes. World Neurosurg. 2021;148:e310–3.

    Article  Google Scholar 

  28. Zanello M, Roux A, Debacker C, Peeters S, Edjlali-Goujon M, Dhermain F, et al. Postoperative intracerebral hematomas following stereotactic biopsies: poor planning or poor execution? Int J Med Robot. 2021;17:e2211.

    Article  Google Scholar 

  29. Cardinale F, Casaceli G, Raneri F, Miller JP, Lo RG. Implantation of StereoElectroEncephaloGraphy (SEEG) electrodes: a systematic review. J Clin Neurophysiol. 2016;33:490–502.

    Article  Google Scholar 

  30. Munari C, Hoffmann D, Francione S, Kahane P, Tassi L, Lo Russo G, et al. Stereo-electroencephalography methodology: advantages and limits. Acta Neurol Scand. 1994;89:56–67.

    Article  Google Scholar 

  31. Olivier A. Diagnostic operative techniques in the treatment of epilepsy: depth electrodes. In: Schmidek HH, Sweet WH, editors. Schmidek & sweet operative neurosurgical techniques: indications, methods, and results. 3rd ed. Philadelphia: Saunders Company; 1995. p. 1271–85.

    Google Scholar 

  32. Roberts DW. Fundamentals of registration. In: Barnett GH, Maciunas RJ, Roberts DW, editors. Computer assisted neurosurgery. New York: Taylor & Francis Group; 2006. p. 3–17.

    Google Scholar 

  33. Preim B, Bartz D. Acquisition of medical image data. In: Preim B, Bartz D, editors. Visualization in medicine. Burlington, MA: Morgan Kaufmann Publishers, Inc.; 2007. p. 35–64.

    Chapter  Google Scholar 

  34. Preim B, Bartz D. Measurements in medical visualization. In: Preim B, Bartz D, editors. Visualization in medicine. Burlington, MA: Morgan Kaufmann Publishers, Inc.; 2007. p. 313–39.

    Chapter  Google Scholar 

  35. Fahrig R, Fox A, Holdsworth DW. Characterization of a C-arm mounted XRII for 3D image reconstruction during interventional neuroradiology. Proc SPIE. 1996;2708:351–60.

    Article  Google Scholar 

  36. Fahrig R, Fox A, Lownie SP, Holdsworth DW. Use of a C-arm system to generate true three-dimensional computed rotational angiograms: preliminary in vitro and in vivo results. Am J Neuroradiol. 1997;18(8):1507–14.

    CAS  Google Scholar 

  37. Balachandran R, Welch EB, Dawant BM, Fitzpatrick MJ. Effect of MR distortion on targeting for deep-brain stimulation. IEEE Trans Biomed Eng. 2010;57(7):1729–35.

    Article  Google Scholar 

  38. Hardy PA, Barnett GH. Spatial distortion in magnetic resonance imaging: impact on stereotactic localization. In: Gildenberg PL, Tasker RR, editors. Textbook of stereotactic and functional neurosurgery. New York: McGraw-Hill; 1998. p. 271–80.

    Google Scholar 

  39. Musolino A, Tournoux P, Missir O, Talairach J. Methodology of “in vivo” anatomical study and stereo-electroencephalographic exploration in brain surgery for epilepsy. J Neuroradiol. 1990;17(2):67–102.

    CAS  Google Scholar 

  40. Benabid AL, Chabardès S, Seigneuret E, Hoffmann D, LeBas JF. The Talairach stereotactic system. In: Lozano AM, Gildenberg PL, Tasker RR, editors. Textbook of stereotactic and functional neurosurgery. 2nd ed. Berlin: Springer-Verlag; 2009. p. 495–509.

    Chapter  Google Scholar 

  41. Minkin K, Gabrowsky K, Penkov M, Todorov Y, Tanova R, Milenova Y, et al. Stereoelectroencephalography using magnetic resonance angiography for avascular trajectory planning: technical report. Neurosurgery. 2017;81:688–95.

    Article  Google Scholar 

  42. McGovern RA, Butler RS, Bena J, Gonzalez-Martinez JA. Incorporating new technology into a surgical technique: the learning curve of a single surgeon’s stereo-electroencephalography experience. Neurosurgery. 2020;86(3):E281–9.

    Article  Google Scholar 

  43. Li K, Vakharia VN, Sparks R, Rodionov R, Vos SB, McEvoy AW, et al. Stereoelectroencephalography electrode placement: detection of blood vessel conflicts. Epilepsia. 2019;60:1942–8.

    Article  Google Scholar 

  44. Cardinale F, Pero G, Quilici L, Piano M, Colombo PE, Moscato A, et al. Cerebral angiography for multimodal surgical planning in epilepsy surgery: description of a new three-dimensional technique and literature review. World Neurosurg. 2015;84:358–67.

    Article  Google Scholar 

  45. Willinsky RA, Taylor SM, TerBrugge K, Farb RI, Tomlinson G, Montanera W. Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology. 2003;227(2):522–8.

    Article  Google Scholar 

  46. Cardinale F, Rizzi M, Vignati E, Cossu M, Castana L, D’Orio P, et al. Stereoelectroencephalography: retrospective analysis of 742 procedures in a single Centre. Brain. 2019;142:2688–704.

    Article  Google Scholar 

  47. Mellerio C, Roca P, Chassoux F, Danière F, Cachia A, Lion S, et al. The power button sign: a newly described central sulcal pattern on surface rendering MR images of type 2 focal cortical dysplasia. Radiology. 2015;274(2):500–7.

    Article  Google Scholar 

  48. Minkin K, Gabrowsky K, Sirakov S, Penkov M, Todorov Y, Karakostov V, et al. Three-dimensional neuronavigation in SEEG-guided epilepsy surgery. Acta Neurochir. 2019;161:917–23.

    Article  Google Scholar 

  49. Nowell M, Rodionov R, Zombori G, Sparks R, Winston GP, Kinghorn J, et al. Utility of 3D multimodality imaging in the implantation of intracranial electrodes in epilepsy. Epilepsia. 2015;56(3):403–13.

    Article  Google Scholar 

  50. Régis J, Tamura M, Park MC, McGonigal A, Rivière D, Coulon O, et al. Subclinical abnormal gyration pattern, a potential anatomic marker of epileptogenic zone in patients with magnetic resonance imaging-negative frontal lobe epilepsy. Neurosurgery. 2011;69(1):80–94.

    Article  Google Scholar 

  51. Maurer CRJ, Fitzpatrick MJ. A review of medical image registration. In: Maciunas RJ, editor. Interactive image-guided neurosurgery. AANS; 1993. p. 17–44.

    Google Scholar 

  52. Jenkinson M, Bannister PR, Brady JM, Smith SM. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17(2):825–41.

    Article  Google Scholar 

  53. Jenkinson M. Registration, atlases and cortical flattening. In: Jezzard P, Matthews PM, Smith SM, editors. Functional MRI an introduction to methods. Oxford: Oxford University Press, Inc.; 2001. p. 271–93.

    Google Scholar 

  54. Jenkinson M, Chappell M. Registration. In: Jenkinson M, Chappell M, editors. Introduction to neuroimaging analysis. Oxford: Oxford University Press, Inc.; 2018. p. 210–63.

    Google Scholar 

  55. Maintz JA, Viergever MA. A survey of medical image registration. Med Image Anal. 1998;2(1):1–36.

    Article  CAS  Google Scholar 

  56. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P. Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging. 1997;16(2):187–98.

    Article  CAS  Google Scholar 

  57. Viola P, Wells WMI. Alignment by maximization of mutual information. Int J Comput Vis. 1997;24(2):137–54.

    Article  Google Scholar 

  58. Roche A, Malandain G, Pennec X, Ayache N. The correlation ratio as a new similarity measure for multimodal image registration. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 1998;1496:1115–24.

    Google Scholar 

  59. Aladl UE, Peters T. Medical image registration. In: El-Baz A, Laine AF, Acharya R, Suri JS, editors. Multi-modality state-of-the-art medical image segmentation and registration methodologies, vol. II. New York: Springer; 2011. p. 227–45.

    Chapter  Google Scholar 

  60. Hermosillo G, Chefd’hotel C, Herrmann K, Bousquet G, Bogoni L, Chaudhuri K, et al. Image registration in medical imaging: applications, methods, and clinical evaluation Gerardo. In: El-Baz A, Laine AF, Acharya R, Suri JS, editors. Multi modality state-of-the-art medical image segmentation and registration methodologies, vol. II. New York: Springer; 2011. p. 263–313.

    Chapter  Google Scholar 

  61. Studholme C, Hill DL, Hawkes DJ. Automated 3-D registration of MR and CT images of the head. Med Image Anal. 1996;1(2):163–75.

    Article  CAS  Google Scholar 

  62. van den Elsen PA, Evert-Jan DP, Viergever MA. Medical image matching—a review with classification. IEEE Eng Med Biol. 1993;12:26–39.

    Article  Google Scholar 

  63. Viergever MA, Maintz JA, Klein S, Murphy K, Staring M, Pluim JP. A survey of medical image registration—under review. Med Image Anal. 2016;33:140–4.

    Article  Google Scholar 

  64. West JB, Fitzpatrick MJ, Wang MY, Dawant BM, Maurer CRJ, Kessler RM, et al. Comparison and evaluation of retrospective intermodality brain image registration techniques. J Comput Assist Tomogr. 1997;21(4):554–66.

    Article  CAS  Google Scholar 

  65. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30:1323–41.

    Article  Google Scholar 

  66. Fischl BR. FreeSurfer. Neuroimage. 2012;62:774–81.

    Article  Google Scholar 

  67. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage. 2012;62(2):782–90.

    Article  Google Scholar 

  68. Ashburner J. SPM: a history. NeuroImage. 2012;62(2):791–800.

    Article  Google Scholar 

  69. Liu L, Mariani SG, De Schlichting E, Grand S, Lefranc M, Signeruret E, et al. Frameless ROSA® robot-assisted lead implantation for deep brain stimulation: technique and accuracy. Oper Neurosurg (Hagerstown, MD). 2020;19:57–64.

    Article  Google Scholar 

  70. Cardinale F, Rizzi M, D’Orio P, Casaceli G, Arnulfo G, Narizzano M, et al. A new tool for touch-free patient registration for robot-assisted intracranial surgery: application accuracy from a phantom study and a retrospective surgical series. Neurosurg Focus. 2017;42:E8.

    Article  Google Scholar 

  71. Varma T. Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery. Int J Med Robot Comput Assist Surg. 2006;2(April):107–13.

    Article  CAS  Google Scholar 

  72. Li QH, Zamorano L, Pandya A, Perez R, Gong J, Diaz FG. The application accuracy of the NeuroMate robot—a quantitative comparison with frameless and frame-based surgical localization systems. Comput Aided Surg. 2002;7(2):90–8.

    Article  Google Scholar 

  73. Pelizzari CA, Chen GT, Spelbring DR, Weichselbaum RR, Chin-Tu C. Accurate three-dimensional registration of CT, PET, and/or MR images of the brain. J Comput Assist Tomogr. 1989;13(1):20–6.

    Article  CAS  Google Scholar 

  74. Gonzalez-Martinez JA, Bulacio JC, Thompson S, Gale JT, Smithason S, Najm IM, et al. Technique, results, and complications related to robot-assisted stereoelectroencephalography. Neurosurgery. 2016;78(2):169–80.

    Article  Google Scholar 

  75. Machetanz K, Grimm F, Wang S, Bender B, Tatagiba M, Gharabaghi A, et al. Patient-to-robot registration: the fate of robot-assisted stereotaxy. Int J Med Robot Comput Assist Surg. 2021;17(5):e2288.

    Google Scholar 

  76. Lemieux L, Lester S, Fish DR. Multimodality imaging and intracranial EEG display for stereotactic surgery planning in epilepsy. Electroencephalogr Clin Neurophysiol. 1992;82:399–407.

    Article  CAS  Google Scholar 

  77. Cardinale F, Cossu M, Castana L, Casaceli G, Schiariti MP, Miserocchi A, et al. Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery. 2013;72:353–66.

    Article  Google Scholar 

  78. Lemieux L, Jagoe R, Fish DR, Kitchen ND, Thomas DG. A patient-to-computed-tomography image registration method based on digitally reconstructed radiographs. Med Phys. 1994;21(11):1749–60.

    Article  CAS  Google Scholar 

  79. Elder JB, Amar AP, Apuzzo MLJ. Stereotactic and image-guided biopsy. In: Lozano AM, Gildenberg PL, Tasker RR, editors. Textbook of stereotactic and functional neurosurgery. 2nd ed. Berlin: Springer-Verlag; 2009. p. 645–62.

    Chapter  Google Scholar 

  80. Jain D, Sharma MC, Sarkar C, Deb P, Gupta D, Mahapatra A. Correlation of diagnostic yield of stereotactic brain biopsy with number of biopsy bits and site of the lesion. Brain Tumor Pathol. 2006;23:71–5.

    Article  Google Scholar 

  81. Dlaka D, Švaco M, Chudy D, Jerbić B, Šekoranja B, Šuligoj F, et al. Brain biopsy performed with the RONNA G3 system: a case study on using a novel robotic navigation device for stereotactic neurosurgery. Int J Med Robot Comput Assist Surg. 2018;14:e1884.

    Article  Google Scholar 

  82. Minchev G, Kronreif G, Martínez-Moreno M, Dorfer C, Micko A, Mert A, et al. A novel miniature robotic guidance device for stereotactic neurosurgical interventions: preliminary experience with the iSYS1 robot. J Neurosurg. 2017;126:985–96.

    Article  Google Scholar 

  83. Carlson JD, McLeod KE, McLeod PS, Mark J. Stereotactic accuracy and surgical utility of the O-arm in deep brain stimulation surgery. Oper Neurosurg (Hagerstown, MD). 2017;13:96–107.

    Article  Google Scholar 

  84. Furlanetti L, Hasegawa H, Oviedova A, Raslan A, Samuel M, Selway R, et al. O-arm stereotactic imaging in deep brain stimulation surgery workflow: a utility and cost-effectiveness analysis. Stereotact Funct Neurosurg. 2021;99(2):93–106.

    Google Scholar 

  85. Holewijn RA, Bot M, van den Munckhof P, Schuurman PR. Implementation of intraoperative cone-beam computed tomography (O-arm) for stereotactic imaging during deep brain stimulation procedures. Oper Neurosurg (Hagerstown, MD). 2020;19:E224–9.

    Article  Google Scholar 

  86. Holloway KL, Docef A. A quantitative assessment of the accuracy and reliability of O-arm images for deep brain stimulation surgery. Neurosurgery. 2013;72:47–57.

    Google Scholar 

  87. Lefranc M, Le Gars D. Robotic implantation of deep brain stimulation leads, assisted by intra-operative, flat-panel CT. Acta Neurochir. 2012;154:2069–74.

    Article  CAS  Google Scholar 

  88. Smith AP, Bakay RA. Frameless deep brain stimulation using intraoperative O-arm technology. J Neurosurg. 2011;115:301–9.

    Article  Google Scholar 

  89. Cardinale F, Moscato A, Colombo PE, Castana L, Cossu M, Torresin A, et al. Intraoperative angiography for intracerebral electrodes planning and implantation: preliminary results with the O-arm system. Abstracts’ Volume of the 2nd Meeting of IntraOperative Imaging Society. Istanbul; 2009. p. 13.

    Google Scholar 

  90. Cardinale F, Cossu M, Castana L, Schiariti MP, Moscato A, Torresin A, et al. Advances in the surgical technique for stereoelectroencephalography (SEEG) in epilepsy surgery: a retrospective analysis of geometrical accuracy and safety for the implantation of 282 intracerebral electrodes. Acta Neurochir. 2011;153:761.

    Google Scholar 

  91. Cardinale F, Miserocchi A, Moscato A, Cossu M, Castana L, Schiariti MP, et al. Talairach methodology in the multimodal imaging and robotics era. In: Scarabin J-M, editor. Stereotaxy and epilepsy surgery. Montrouge: John Libbey Eurotext; 2012. p. 245–72.

    Google Scholar 

  92. Arnulfo G, Narizzano M, Cardinale F, Fato MM, Palva JM. Automatic segmentation of deep intracerebral electrodes in computed tomography scans. BMC Bioinformatics. 2015;16:1–12.

    Article  Google Scholar 

  93. Desikan RS, Ségonne F, Fischl BR, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 2006;31:968–80.

    Article  Google Scholar 

  94. Destrieux C, Fischl BR, Dale AM, Halgren E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage. 2010;53:1–15.

    Article  Google Scholar 

  95. Narizzano M, Arnulfo G, Ricci S, Toselli B, Tisdall MM, Canessa A, et al. SEEG assistant: a 3D slicer extension to support epilepsy surgery. BMC Bioinformatics. 2017;18:1–13.

    Article  Google Scholar 

  96. Bourdillon P, Chatillon CÉ, Moles A, Rheims S, Catenoix H, Montavont A, et al. Effective accuracy of StereoElectroEncephaloGraphy (SEEG): robotic tridimensional vs Talairach orthogonal approaches. J Neurosurg. 2019;131:1938–46.

    Article  Google Scholar 

  97. Pistol C, Daneasa A, Ciurea J, Rasina A, Barborica A, Oane I, et al. Accuracy and safety of customized stereotactic fixtures for stereoelectroencephalography in pediatric patients. Stereotact Funct Neurosurg. 2021;99(1):17–24.

    Article  Google Scholar 

  98. Sharma JD, Seunarine KK, Tahir MZ, Tisdall MM. Accuracy of robot-assisted versus optical frameless navigated stereoelectroencephalography electrode placement in children. J Neurosurg Pediatr. 2019;23:297–302.

    Article  Google Scholar 

  99. Lin Z, Wang G, Cheng J, Lin Y, Liu J, Lin J, et al. A robust automated pipeline for localizing SEEG electrode contacts. In: Zeng A, Pan D, Hao T, Zhang D, Shi Y, Song X, editors. Human brain and artificial intelligence. Singapore: Springer Nature; 2019. p. 36–51.

    Chapter  Google Scholar 

  100. Granados A, Vakharia VN, Rodionov R, Schweiger M, Vos SB, O’Keeffe AG, et al. Automatic segmentation of stereoelectroencephalography (SEEG) electrodes post-implantation considering bending. Int J Comput Assist Radiol Surg. 2018;13:935–46.

    Article  Google Scholar 

  101. Villalon SM, Paz R, Roehri N, Lagarde S, Pizzo F, Colombet B, et al. EpiTools, a software suite for presurgical brain mapping in epilepsy: intracerebral EEG. J Neurosci Methods. 2018;303:7–15.

    Article  Google Scholar 

  102. Li G, Jiang S, Chen C, Brunner P, Wu Z, Schalk G, et al. iEEGview: an open-source multifunction GUI-based Matlab toolbox for localization and visualization of human intracranial electrodes. J Neural Eng. 2019;17:016016.

    Article  Google Scholar 

  103. Blenkmann AO, Phillips HN, Princich JP, Rowe JB, Bekinschtein TA, Muravchik CH, et al. iElectrodes: a comprehensive open-source toolbox for depth and subdural grid electrode localization. Front Neuroinform. 2017;11:1–16.

    Article  Google Scholar 

  104. Deman P, Bhattacharjee M, Tadel F, Job A-S, Rivière D, Cointepas Y, et al. IntrAnat electrodes: a free database and visualization software for intracranial electroencephalographic data processed for case and group studies. Front Neuroinform. 2018;12:1–11.

    Article  Google Scholar 

  105. Higueras-Esteban A, Delgado-Martinez I, Serrano L, Principe A, Perez Enriquez C, Gonzalez Ballester MA, et al. SYLVIUS: a multimodal and multidisciplinary platform for epilepsy surgery. Comput Methods Prog Biomed. 2021;203:106,042.

    Article  Google Scholar 

  106. Greene P, Li A, González-Martínez J, Sarma SV. Classification of stereo-EEG contacts in white matter vs. gray matter using recorded activity. Front Neurol. 2021;11:605,696.

    Article  Google Scholar 

  107. Arnulfo G, Wang SH, Myrov V, Toselli B, Hirvonen J, Fato MM, et al. Long-range phase synchronization of high-frequency oscillations in human cortex. Nat Commun. 2020;11:5363.

    Article  CAS  Google Scholar 

  108. Avanzini P, Abdollahi RO, Sartori I, Caruana F, Pelliccia V, Casaceli G, et al. Four-dimensional maps of the human somatosensory system. Proc Natl Acad Sci. 2016;113:1936–43.

    Article  Google Scholar 

  109. Balestrini S, Francione S, Mai R, Castana L, Casaceli G, Marino D, et al. Multimodal responses induced by cortical stimulation of the parietal lobe: a stereo-electroencephalography study. Brain. 2015;138:2596–607.

    Article  Google Scholar 

  110. Caruana F, Gerbella M, Avanzini P, Gozzo F, Pelliccia V, Mai R, et al. Motor and emotional behaviors elicited by electrical stimulation of the human cingulate cortex. Brain. 2018;141:3035–51.

    Article  Google Scholar 

  111. David O, Blauwblomme T, Job A-S, Chabardès S, Hoffmann D, Minotti L, et al. Imaging the seizure onset zone with stereo-electroencephalography. Brain. 2011;134:2898–911.

    Article  Google Scholar 

  112. David O, Job A-S, De Palma L, Hoffmann D, Minotti L, Kahane P. Probabilistic functional tractography of the human cortex. NeuroImage. 2013;80:307–17.

    Article  Google Scholar 

  113. Ferraro S, Van Ackeren MJ, Mai R, Tassi L, Cardinale F, Nigri A, et al. Stereotactic electroencephalography in humans reveals multisensory signal in early visual and auditory cortices. Cortex. 2020;126:253–64.

    Article  Google Scholar 

  114. Mikulan E, Russo S, Parmigiani S, Sarasso S, Zauli FM, Rubino A, et al. Simultaneous human intracerebral stimulation and HD-EEG: ground-truth for source localization methods. Sci Data. 2020;7:127.

    Article  Google Scholar 

  115. Rubboli G, Mai R, Meletti S, Francione S, Cardinale F, Tassi L, et al. Negative myoclonus induced by cortical electrical stimulation in epileptic patients. Brain. 2006;129:65–81.

    Article  Google Scholar 

  116. Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. Mathematical framework for large-scale brain network modeling in the virtual brain. NeuroImage. 2015;111:385–430.

    Article  Google Scholar 

  117. Lefranc M, Capel C, Pruvot-Occean A-S, Fichten A, Desenclos C, Toussaint P, et al. The impact of the reference imaging modality, registration method and intraoperative flat-panel computed tomography on the accuracy of the ROSA® stereotactic robot. Stereotact Funct Neurosurg. 2014;92(4):242–50.

    Article  Google Scholar 

  118. Moran C, Gerard CS, Barua N, Ashida R, Woolley M, Pietrzyk M, et al. Two hundred twenty-six consecutive deep brain stimulation electrodes placed using an “asleep” technique and the neuro|mate robot for the treatment of movement disorders. Oper Neurosurg (Hagerstown, MD). 2020;19:530–8.

    Article  Google Scholar 

  119. De Benedictis A, Trezza A, Carai A, Genovese E, Procaccini E, Messina R, et al. Robot-assisted procedures in pediatric neurosurgery. Neurosurg Focus. 2017;42(5):E7.

    Article  Google Scholar 

  120. Dorfer C, Minchev G, Czech T, Stefanits H, Feucht M, Pataraia E, et al. A novel miniature robotic device for frameless implantation of depth electrodes in refractory epilepsy. J Neurosurg. 2017;126:1622–8.

    Article  Google Scholar 

  121. Zheng J, Liu YL, Zhang D, Cui XH, Sang LX, Xie T, et al. Robot-assisted versus stereotactic frame-based stereoelectroencephalography in medically refractory epilepsy. Neurophysiol Clin. 2021;51:111–9.

    Article  Google Scholar 

  122. Kim LH, Feng AY, Ho AL, Parker JJ, Kumar KK, Chen KS, et al. Robot-assisted versus manual navigated stereoelectroencephalography in adult medically-refractory epilepsy patients. Epilepsy Res. 2020;159:106253.

    Article  CAS  Google Scholar 

  123. Rollo PS, Rollo MJ, Zhu P, Woolnough O, Tandon N. Oblique trajectory angles in robotic stereo-electroencephalography. J Neurosurg. 2021;135(1):245–54.

    Google Scholar 

  124. Bottan JS, Rubino PA, Lau JC, MacDougall KW, Parrent AG, Burneo JG, et al. Robot-assisted insular depth electrode implantation through oblique trajectories: 3-dimensional anatomical nuances, technique, accuracy, and safety. Oper Neurosurg (Hagerstown, MD). 2020;18(3):278–83.

    Article  Google Scholar 

  125. Candela-Cantó S, Aparicio J, López JM, Baños-Carrasco P, Ramírez-Camacho A, Climent A, et al. Frameless robot-assisted stereoelectroencephalography for refractory epilepsy in pediatric patients: accuracy, usefulness, and technical issues. Acta Neurochir. 2018;160:2489–500.

    Article  Google Scholar 

  126. Ollivier I, Behr C, Cebula H, Timofeev A, Benmekhbi M, Valenti MP, et al. Efficacy and safety in frameless robot-assisted stereo-electroencephalography (SEEG) for drug-resistant epilepsy. Neurochirurgie. 2017;63(4):286–90.

    Article  CAS  Google Scholar 

  127. Spyrantis A, Cattani A, Strzelczyk A, Rosenow F, Seifert V, Freiman TM. Robot guided stereoelectroencephalography without computed tomography scan for referencing—analysis of accuracy. Int J Med Robot Comput Assist Surg. 2018;14:e1888.

    Article  Google Scholar 

  128. Ho AL, Muftuoglu Y, Pendharkar AV, Sussman ES, Porter BE, Halpern CH, et al. Robot-guided pediatric stereoelectroencephalography: single-institution experience. J Neurosurg Pediatr. 2018;22:489–96.

    Article  Google Scholar 

  129. De Momi E, Caborni C, Cardinale F, Castana L, Casaceli G, Cossu M, et al. Automatic trajectory planner for StereoElectroEncephaloGraphy procedures: a retrospective study. IEEE Trans Biomed Eng. 2013;60:986–93.

    Article  Google Scholar 

  130. El Hadji S, Moccia S, Scorza D, Rizzi M, Cardinale F, Baselli G, et al. Brain-vascular segmentation for SEEG planning via a 3D fully-convolutional neural network. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2019:1014–7.

    Google Scholar 

  131. Moccia S, De Momi E, El Hadji S, Mattos LS. Blood vessel segmentation algorithms—review of methods, datasets and evaluation metrics. Comput Methods Prog Biomed. 2018;158:71–91.

    Article  Google Scholar 

  132. Scorza D, De Momi E, Plaino L, Amoroso G, Arnulfo G, Narizzano M, et al. Retrospective evaluation and SEEG trajectory analysis for interactive multi-trajectory planner assistant. Int J Comput Assist Radiol Surg. 2017;12:1727–38.

    Article  Google Scholar 

  133. Vakharia VN, Sparks R, Vos SB, McEvoy AW, Miserocchi A, Ourselin S, et al. The effect of vascular segmentation methods on stereotactic trajectory planning for drug-resistant focal epilepsy: a retrospective cohort study. World Neurosurg X. 2019;4:100,057.

    Article  Google Scholar 

  134. Wagstyl K, Adler S, Pimpel B, Chari A, Seunarine K, Lorio S, et al. Planning stereoelectroencephalography using automated lesion detection: retrospective feasibility study. Epilepsia. 2020;61:1406–16.

    Article  Google Scholar 

  135. De Momi E, Caborni C, Cardinale F, Casaceli G, Castana L, Cossu M, et al. Multi-trajectories automatic planner for StereoElectroEncephaloGraphy (SEEG). Int J Comput Assist Radiol Surg. 2014;9:1087–97.

    Article  Google Scholar 

  136. Sparks R, Zombori G, Rodionov R, Nowell M, Vos SB, Zuluaga MA, et al. Automated multiple trajectory planning algorithm for the placement of stereo-electroencephalography (SEEG) electrodes in epilepsy treatment. Int J Comput Assist Radiol Surg. 2017;12:123–36.

    Article  Google Scholar 

  137. Zelmann R, Bériault S, Marinho MM, Mok K, Hall JA, Guizard N, et al. Improving recorded volume in mesial temporal lobe by optimizing stereotactic intracranial electrode implantation planning. Int J Comput Assist Radiol Surg. 2015;10:1599–615.

    Article  CAS  Google Scholar 

  138. Scorza D, Rizzi M, De Momi E, Cortés C, Bertelsen Á, Cardinale F. Knowledge-based automated planning system for StereoElectroEncephaloGraphy: a center-based scenario. J Biomed Inform. Elsevier Inc. 2020;108:103,460.

    Article  Google Scholar 

  139. Vakharia VN, Sparks RE, Granados A, Miserocchi A, McEvoy AW, Ourselin S, et al. Refining planning for stereoelectroencephalography: a prospective validation of spatial priors for computer-assisted planning with application of dynamic learning. Front Neurol. 2020;11:706.

    Article  Google Scholar 

  140. Nowell M, Sparks R, Zombori G, Miserocchi A, Rodionov R, Diehl B, et al. Comparison of computer-assisted planning and manual planning for depth electrode implantations in epilepsy. J Neurosurg. 2016;124:1820–8.

    Article  Google Scholar 

  141. Scorza D, Moccia S, De Luca G, Plaino L, Cardinale F, Mattos LS, et al. Safe electrode trajectory planning in SEEG via MIP-based vessel segmentation. In: Webster RJ, Fei B, editors. Proc SPIE 10135, med imaging 2017 image-guided proced robot interv model. Orlando: SPIE. Digital Library; 2017. p. 101352C–101352C8.

    Google Scholar 

  142. Sparks R, Vakharia VN, Rodionov R, Vos SB, Diehl B, Wehner T, et al. Anatomy-driven multiple trajectory planning (ADMTP) of intracranial electrodes for epilepsy surgery. Int J Comput Assist Radiol Surg. 2017;12:1245–55.

    Article  Google Scholar 

  143. Vakharia VN, Sparks R, Rodionov R, Vos SB, Dorfer C, Miller JP, et al. Computer-assisted planning for the insertion of stereoelectroencephalography electrodes for the investigation of drug-resistant focal epilepsy: an external validation study. J Neurosurg. 2019;130:601–10.

    Article  Google Scholar 

  144. Bériault S, Al Subaie F, Mok K, Sadikot AF, Pike GB. Automatic trajectory planning of DBS neurosurgery from multi-modal MRI datasets. Med Image Comput Assist Interv. 2011;14:259–66.

    Google Scholar 

  145. Bériault S, Al Subaie F, Collins DL, Sadikot AF, Pike GB. A multi-modal approach to computer-assisted deep brain stimulation trajectory planning. Int J Comput Assist Radiol Surg. 2012;7:687–704.

    Article  Google Scholar 

  146. Dergachyova O, Zhao Y, Haegelen C, Jannin P, Essert C. Automatic preoperative planning of DBS electrode placement using anatomo-clinical atlases and volume of tissue activated. Int J Comput Assist Radiol Surg Springer International Publishing. 2018;13:1117–28.

    Article  Google Scholar 

  147. Essert C, Haegelen C, Lalys F, Abadie A, Jannin P. Automatic computation of electrode trajectories for deep brain stimulation: a hybrid symbolic and numerical approach. Int J Comput Assist Radiol Surg. 2012;7:517–32.

    Article  Google Scholar 

  148. Essert C, Fernandez-Vidal S, Capobianco A, Haegelen C, Karachi C, Bardinet E, et al. Statistical study of parameters for deep brain stimulation automatic preoperative planning of electrodes trajectories. Int J Comput Assist Radiol Surg. 2015;10:1973–83.

    Article  Google Scholar 

  149. Marcus HJ, Vakharia VN, Sparks R, Rodionov R, Kitchen N, McEvoy AW, et al. Computer-assisted versus manual planning for stereotactic brain biopsy: a retrospective comparative pilot study. Oper Neurosurg. 2020;18:417–22.

    Google Scholar 

  150. Segato A, Pieri V, Favaro A, Riva M, Falini A, De Momi E, et al. Automated steerable path planning for deep brain stimulation safeguarding fiber tracts and deep gray matter nuclei. Front Robot AI. 2019;6:1–15.

    Article  Google Scholar 

  151. Scorza D, El Hadji S, Cortés C, Bertelsen A, Cardinale F, Baselli G, et al. Surgical planning assistance in keyhole and percutaneous surgery: a systematic review. Med Image Anal. 2021;67:101820.

    Article  Google Scholar 

  152. Zanello M, Carron R, Peeters S, Gori P, Roux A, Bloch I, et al. Automated neurosurgical stereotactic planning for intraoperative use: a comprehensive review of the literature and perspectives. Neurosurg Rev. 2021;44:867–88.

    Article  Google Scholar 

  153. Benabid AL, Hoffmann D, Lavallée S, Cinquin P, Demongeot J, Le Bas JF, et al. Is there any future for robots in neurosurgery? Adv Tech Stand Neurosurg. 1991;18:3–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We like to express or gratitude to all our coworkers from the teams of “Claudio Munari Center,” “Neuroradiology,” “Anesthesiology,” “Pediatrics,” “Pathology,” “Medical Physics,” “Clinical Engineering,” and “Information Technology” departments at Niguarda Hospital.

We would like to thank Gloria Innocenti for her contribution to bibliographic research and document retrieval, and all our friends from Politecnico di Milano and University of Genova for their constant collaboration and help in the field of biomedical engineering.

We want to thank also our close friends, Angela Catapano and Umberto Piccolo, for providing us with the drawing and the photos included in Fig. 4.2.

Finally, and most important, we would like to thank Claudio Munari, our mentor, who taught us mainly the value of team working among innumerable other things.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Cardinale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cardinale, F. et al. (2022). Image Guidance for Intracranial Surgery with Supervisory-Control Robots. In: González Martínez, J.A., Cardinale, F. (eds) Robotics in Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-031-08380-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08380-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08379-2

  • Online ISBN: 978-3-031-08380-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics