Skip to main content

Organization of Ca2+ Signaling Microdomains in Cardiac Myocytes

  • Chapter
  • First Online:
Cardiovascular Signaling in Health and Disease
  • 452 Accesses

Abstract

Calcium signaling in cardiomyocytes regulates muscle contractile function and electrical signal propagation in the heart. While calcium influx in nodal cells controls the rhythmic heartbeat, calcium transients in working cardiomyocytes direct excitation-contraction coupling and energy-dependent diastolic relaxation to maintain beat-to-beat pump function. Calcium dysregulation is a hallmark of the pathophysiology of multiple heart diseases including hypertrophy, heart failure, and arrhythmia. Proper compartmentalization and regulation of intra-cardiomyocyte calcium signaling relies on the organization of key calcium-handling machinery to specific functional microdomains. These microdomains serve as signaling hubs to orchestrate cardiac activities whose disruption can contribute to disease progression. Thus, understanding the structure and function of the calcium signaling microdomains in cardiomyocytes is of great scientific interest and translational significance. In this chapter, we discuss the current knowledge concerning calcium signaling at major cardiomyocyte microdomains, microdomain remodeling in diseases, and targetable approaches for the development of new therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Phys. 1983;245(1):C1–14.

    Article  CAS  Google Scholar 

  2. Pessah IN, Waterhouse AL, Casida JE. The calcium-ryanodine receptor complex of skeletal and cardiac muscle. Biochem Biophys Res Commun. 1985;128(1):449–56.

    Article  CAS  PubMed  Google Scholar 

  3. Inui M, Saito A, Fleischer S. Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J Biol Chem. 1987;262(32):15637–42.

    Article  CAS  PubMed  Google Scholar 

  4. Cheng H, Lederer WJ, Cannell MB. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science. 1993;262(5134):740–4.

    Article  CAS  PubMed  Google Scholar 

  5. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415(6868):198–205.

    Article  CAS  PubMed  Google Scholar 

  6. Scriven DR, Dan P, Moore ED. Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes. Biophys J. 2000;79(5):2682–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bers DM, Stiffel VM. Ratio of ryanodine to dihydropyridine receptors in cardiac and skeletal muscle and implications for E-C coupling. Am J Phys. 1993;264(6 Pt 1):C1587–93.

    Article  CAS  Google Scholar 

  8. Cannell MB, Cheng H, Lederer WJ. Spatial non-uniformities in [Ca2+]i during excitation-contraction coupling in cardiac myocytes. Biophys J. 1994;67(5):1942–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bers DM. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol. 2008;70:23–49.

    Article  CAS  PubMed  Google Scholar 

  10. Perreault CL, Shannon RP, Komamura K, Vatner SF, Morgan JP. Abnormalities in intracellular calcium regulation and contractile function in myocardium from dogs with pacing-induced heart failure. J Clin Invest. 1992;89(3):932–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, et al. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science. 1997;276(5313):800–6.

    Article  CAS  PubMed  Google Scholar 

  12. Litwin SE, Zhang D, Bridge JH. Dyssynchronous Ca(2+) sparks in myocytes from infarcted hearts. Circ Res. 2000;87(11):1040–7.

    Article  CAS  PubMed  Google Scholar 

  13. Lyon AR, MacLeod KT, Zhang Y, Garcia E, Kanda GK, Lab MJ, et al. Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc Natl Acad Sci U S A. 2009;106(16):6854–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wei S, Guo A, Chen B, Kutschke W, Xie YP, Zimmerman K, et al. T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res. 2010;107(4):520–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Louch WE, Sejersted OM, Swift F. There goes the neighborhood: pathological alterations in T-tubule morphology and consequences for cardiomyocyte Ca2+ handling. J Biomed Biotechnol. 2010;2010:503906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gomez AM, Guatimosim S, Dilly KW, Vassort G, Lederer WJ. Heart failure after myocardial infarction: altered excitation-contraction coupling. Circulation. 2001;104(6):688–93.

    Article  CAS  PubMed  Google Scholar 

  17. He J, Conklin MW, Foell JD, Wolff MR, Haworth RA, Coronado R, et al. Reduction in density of transverse tubules and L-type Ca(2+) channels in canine tachycardia-induced heart failure. Cardiovasc Res. 2001;49(2):298–307.

    Article  CAS  PubMed  Google Scholar 

  18. Louch WE, Mork HK, Sexton J, Stromme TA, Laake P, Sjaastad I, et al. T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction. J Physiol. 2006;574(Pt 2):519–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bito V, Heinzel FR, Biesmans L, Antoons G, Sipido KR. Crosstalk between L-type Ca2+ channels and the sarcoplasmic reticulum: alterations during cardiac remodelling. Cardiovasc Res. 2008;77(2):315–24.

    Article  CAS  PubMed  Google Scholar 

  20. Hasenfuss G. Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res. 1998;37(2):279–89.

    Article  CAS  PubMed  Google Scholar 

  21. Gwathmey JK, Copelas L, MacKinnon R, Schoen FJ, Feldman MD, Grossman W, et al. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res. 1987;61(1):70–6.

    Article  CAS  PubMed  Google Scholar 

  22. Beuckelmann DJ, Nabauer M, Erdmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation. 1992;85(3):1046–55.

    Article  CAS  PubMed  Google Scholar 

  23. Sipido KR, Stankovicova T, Flameng W, Vanhaecke J, Verdonck F. Frequency dependence of Ca2+ release from the sarcoplasmic reticulum in human ventricular myocytes from end-stage heart failure. Cardiovasc Res. 1998;37(2):478–88.

    Article  CAS  PubMed  Google Scholar 

  24. Hasenfuss G, Schillinger W, Lehnart SE, Preuss M, Pieske B, Maier LS, et al. Relationship between Na+-Ca2+-exchanger protein levels and diastolic function of failing human myocardium. Circulation. 1999;99(5):641–8.

    Article  CAS  PubMed  Google Scholar 

  25. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell. 2000;101(4):365–76.

    Article  CAS  PubMed  Google Scholar 

  26. Wehrens XH, Lehnart SE, Reiken S, Vest JA, Wronska A, Marks AR. Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression. Proc Natl Acad Sci U S A. 2006;103(3):511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hong T, Shaw RM. Cardiac T-tubule microanatomy and function. Physiol Rev. 2017;97(1):227–52.

    Article  PubMed  Google Scholar 

  28. Hong T, Yang H, Zhang SS, Cho HC, Kalashnikova M, Sun B, et al. Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat Med. 2014;20(6):624–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu Y, Shaw SA, Naami R, Vuong CL, Basheer WA, Guo X, et al. Isoproterenol promotes rapid ryanodine receptor movement to bridging integrator 1 (BIN1)-organized dyads. Circulation. 2016;133(4):388–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prokic I, Cowling BS, Laporte J. Amphiphysin 2 (BIN1) in physiology and diseases. J Mol Med (Berl). 2014;92(5):453–63.

    Article  CAS  Google Scholar 

  31. Wechsler-Reya R, Sakamuro D, Zhang J, Duhadaway J, Prendergast GC. Structural analysis of the human BIN1 gene. Evidence for tissue-specific transcriptional regulation and alternate RNA splicing. J Biol Chem. 1997;272(50):31453–8.

    Article  CAS  PubMed  Google Scholar 

  32. Butler MH, David C, Ochoa GC, Freyberg Z, Daniell L, Grabs D, et al. Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of ranvier in brain and around T tubules in skeletal muscle. J Cell Biol. 1997;137(6):1355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ge K, DuHadaway J, Du W, Herlyn M, Rodeck U, Prendergast GC. Mechanism for elimination of a tumor suppressor: aberrant splicing of a brain-specific exon causes loss of function of Bin1 in melanoma. Proc Natl Acad Sci U S A. 1999;96(17):9689–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee E, Marcucci M, Daniell L, Pypaert M, Weisz OA, Ochoa GC, et al. Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science. 2002;297(5584):1193–6.

    Article  CAS  PubMed  Google Scholar 

  35. Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science. 2004;303(5657):495–9.

    Article  CAS  PubMed  Google Scholar 

  36. Wigge P, Kohler K, Vallis Y, Doyle CA, Owen D, Hunt SP, et al. Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol Biol Cell. 1997;8(10):2003–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fernando P, Sandoz JS, Ding W, de Repentigny Y, Brunette S, Kelly JF, et al. Bin1 SRC homology 3 domain acts as a scaffold for myofiber sarcomere assembly. J Biol Chem. 2009;284(40):27674–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hong TT, Smyth JW, Gao D, Chu KY, Vogan JM, Fong TS, et al. BIN1 localizes the L-type calcium channel to cardiac T-tubules. PLoS Biol. 2010;8(2):e1000312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sakamuro D, Elliott KJ, Wechsler-Reya R, Prendergast GC. BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat Genet. 1996;14(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  40. Lawless M, Caldwell JL, Radcliffe EJ, Smith CER, Madders GWP, Hutchings DC, et al. Phosphodiesterase 5 inhibition improves contractile function and restores transverse tubule loss and catecholamine responsiveness in heart failure. Sci Rep. 2019;9(1):6801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Fu Y, Hong T. BIN1 regulates dynamic t-tubule membrane. Biochim Biophys Acta. 2016;1863(7 Pt B):1839–47.

    Google Scholar 

  42. Liu Y, Zhou K, Li J, Agvanian S, Caldaruse AM, Shaw S, et al. In mice subjected to chronic stress, exogenous cBIN1 preserves calcium-handling machinery and cardiac function. JACC Basic Transl Sci. 2020;5(6):561–78.

    Article  PubMed  PubMed Central  Google Scholar 

  43. De La Mata A, Tajada S, O'Dwyer S, Matsumoto C, Dixon RE, Hariharan N, et al. BIN1 induces the formation of T-tubules and adult-like Ca(2+) release units in developing cardiomyocytes. Stem Cells. 2019;37(1):54–64.

    Article  CAS  Google Scholar 

  44. Landstrom AP, Beavers DL, Wehrens XH. The junctophilin family of proteins: from bench to bedside. Trends Mol Med. 2014;20(6):353–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiang M, Hu J, White FKH, Williamson J, Klymchenko AS, Murthy A, et al. S-Palmitoylation of junctophilin-2 is critical for its role in tethering the sarcoplasmic reticulum to the plasma membrane. J Biol Chem. 2019;294(36):13487–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Poulet C, Sanchez-Alonso J, Swiatlowska P, Mouy F, Lucarelli C, Alvarez-Laviada A, et al. Junctophilin-2 tethers T-tubules and recruits functional L-type calcium channels to lipid rafts in adult cardiomyocytes. Cardiovasc Res. 2021;117(1):149–61.

    Article  CAS  PubMed  Google Scholar 

  47. Gross P, Johnson J, Romero CM, Eaton DM, Poulet C, Sanchez-Alonso J, et al. Interaction of the joining region in Junctophilin-2 with the L-type Ca(2+) channel is pivotal for cardiac dyad assembly and intracellular Ca(2+) dynamics. Circ Res. 2021;128(1):92–114.

    Article  CAS  PubMed  Google Scholar 

  48. Guo A, Wang Y, Chen B, Wang Y, Yuan J, Zhang L, et al. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science. 2018;362(6421):eaan3303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang C, Chen B, Guo A, Zhu Y, Miller JD, Gao S, et al. Microtubule-mediated defects in junctophilin-2 trafficking contribute to myocyte transverse-tubule remodeling and Ca2+ handling dysfunction in heart failure. Circulation. 2014;129(17):1742–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Redden JM, Dodge-Kafka KL. AKAP phosphatase complexes in the heart. J Cardiovasc Pharmacol. 2011;58(4):354–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Davis DB, Doherty KR, Delmonte AJ, McNally EM. Calcium-sensitive phospholipid binding properties of normal and mutant ferlin C2 domains. J Biol Chem. 2002;277(25):22883–8.

    Article  CAS  PubMed  Google Scholar 

  52. Chase TH, Cox GA, Burzenski L, Foreman O, Shultz LD. Dysferlin deficiency and the development of cardiomyopathy in a mouse model of limb-girdle muscular dystrophy 2B. Am J Pathol. 2009;175(6):2299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Demonbreun AR, Rossi AE, Alvarez MG, Swanson KE, Deveaux HK, Earley JU, et al. Dysferlin and myoferlin regulate transverse tubule formation and glycerol sensitivity. Am J Pathol. 2014;184(1):248–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bansal D, Miyake K, Vogel SS, Groh S, Chen CC, Williamson R, et al. Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature. 2003;423(6936):168–72.

    Article  CAS  PubMed  Google Scholar 

  55. Doherty KR, McNally EM. Repairing the tears: dysferlin in muscle membrane repair. Trends Mol Med. 2003;9(8):327–30.

    Article  CAS  PubMed  Google Scholar 

  56. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143(8):e254–743.

    Article  PubMed  Google Scholar 

  57. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596.

    Article  PubMed  Google Scholar 

  58. Brette F, Orchard C. T-tubule function in mammalian cardiac myocytes. Circ Res. 2003;92(11):1182–92.

    Article  CAS  PubMed  Google Scholar 

  59. Brette F, Orchard C. Resurgence of cardiac t-tubule research. Physiology (Bethesda). 2007;22:167–73.

    CAS  Google Scholar 

  60. Ibrahim M, Terracciano CM. Reversibility of T-tubule remodelling in heart failure: mechanical load as a dynamic regulator of the T-tubules. Cardiovasc Res. 2013;98(2):225–32.

    Article  CAS  PubMed  Google Scholar 

  61. Guo A, Zhang C, Wei S, Chen B, Song LS. Emerging mechanisms of T-tubule remodelling in heart failure. Cardiovasc Res. 2013;98(2):204–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ferrantini C, Crocini C, Coppini R, Vanzi F, Tesi C, Cerbai E, et al. The transverse-axial tubular system of cardiomyocytes. Cell Mol Life Sci. 2013;70(24):4695–710.

    Article  CAS  PubMed  Google Scholar 

  63. Hong TT, Smyth JW, Chu KY, Vogan JM, Fong TS, Jensen BC, et al. BIN1 is reduced and Cav1.2 trafficking is impaired in human failing cardiomyocytes. Heart Rhythm. 2012;9(5):812–20.

    Article  PubMed  Google Scholar 

  64. Lyon AR, Nikolaev VO, Miragoli M, Sikkel MB, Paur H, Benard L, et al. Plasticity of surface structures and beta(2)-adrenergic receptor localization in failing ventricular cardiomyocytes during recovery from heart failure. Circ Heart Fail. 2012;5(3):357–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Caldwell JL, Smith CE, Taylor RF, Kitmitto A, Eisner DA, Dibb KM, et al. Dependence of cardiac transverse tubules on the BAR domain protein amphiphysin II (BIN-1). Circ Res. 2014;115(12):986–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu B, Fu Y, Liu Y, Agvanian S, Wirka RC, Baum R, et al. The ESCRT-III pathway facilitates cardiomyocyte release of cBIN1-containing microparticles. PLoS Biol. 2017;15(8):e2002354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Li J, Agvanian S, Zhou K, Shaw RM, Hong T. Exogenous cardiac bridging integrator 1 benefits mouse hearts with pre-existing pressure overload-induced heart failure. Front Physiol. 2020;11:708.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rapundalo ST. Cardiac protein phosphorylation: functional and pathophysiological correlates. Cardiovasc Res. 1998;38(3):559–88.

    Article  CAS  PubMed  Google Scholar 

  69. Luo M, Anderson ME. Mechanisms of altered Ca(2)(+) handling in heart failure. Circ Res. 2013;113(6):690–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ikeda Y, Hoshijima M, Chien KR. Toward biologically targeted therapy of calcium cycling defects in heart failure. Physiology (Bethesda). 2008;23:6–16.

    CAS  Google Scholar 

  71. Reiken S, Gaburjakova M, Guatimosim S, Gomez AM, D’Armiento J, Burkhoff D, et al. Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. Role of phosphatases and response to isoproterenol. J Biol Chem. 2003;278(1):444–53.

    Article  CAS  PubMed  Google Scholar 

  72. Yano M, Ikeda Y, Matsuzaki M. Altered intracellular Ca2+ handling in heart failure. J Clin Invest. 2005;115(3):556–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Marks AR. Calcium cycling proteins and heart failure: mechanisms and therapeutics. J Clin Invest. 2013;123(1):46–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bhasin N, Cunha SR, Mudannayake M, Gigena MS, Rogers TB, Mohler PJ. Molecular basis for PP2A regulatory subunit B56alpha targeting in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2007;293(1):H109–19.

    Article  CAS  PubMed  Google Scholar 

  75. Little SC, Curran J, Makara MA, Kline CF, Ho HT, Xu Z, et al. Protein phosphatase 2A regulatory subunit B56alpha limits phosphatase activity in the heart. Sci Signal. 2015;8(386):ra72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. van Oort RJ, Garbino A, Wang W, Dixit SS, Landstrom AP, Gaur N, et al. Disrupted junctional membrane complexes and hyperactive ryanodine receptors after acute junctophilin knockdown in mice. Circulation. 2011;123(9):979–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Reynolds JO, Quick AP, Wang Q, Beavers DL, Philippen LE, Showell J, et al. Junctophilin-2 gene therapy rescues heart failure by normalizing RyR2-mediated Ca(2+) release. Int J Cardiol. 2016;225:371–80.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wu CY, Chen B, Jiang YP, Jia Z, Martin DW, Liu S, et al. Calpain-dependent cleavage of junctophilin-2 and T-tubule remodeling in a mouse model of reversible heart failure. J Am Heart Assoc. 2014;3(3):e000527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Guo Y, VanDusen NJ, Zhang L, Gu W, Sethi I, Guatimosim S, et al. Analysis of cardiac myocyte maturation using CASAAV, a platform for rapid dissection of cardiac myocyte gene function in vivo. Circ Res. 2017;120(12):1874–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. El Refaey MM, Mohler PJ. Ankyrins and spectrins in cardiovascular biology and disease. Front Physiol. 2017;8:852.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mohler PJ, Davis JQ, Bennett V. Ankyrin-B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP3 receptor in a cardiac T-tubule/SR microdomain. PLoS Biol. 2005;3(12):e423.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Hund TJ, Mohler PJ. Cardiac spectrins: alternative splicing encodes functional diversity. J Mol Cell Cardiol. 2010;48(6):1031–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bennett V, Baines AJ. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev. 2001;81(3):1353–92.

    Article  CAS  PubMed  Google Scholar 

  84. Bennett V, Healy J. Membrane domains based on ankyrin and spectrin associated with cell-cell interactions. Cold Spring Harb Perspect Biol. 2009;1(6):a003012.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hund TJ, Koval OM, Li J, Wright PJ, Qian L, Snyder JS, et al. A beta(IV)-spectrin/CaMKII signaling complex is essential for membrane excitability in mice. J Clin Invest. 2010;120(10):3508–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mohler PJ, Yoon W, Bennett V. Ankyrin-B targets beta2-spectrin to an intracellular compartment in neonatal cardiomyocytes. J Biol Chem. 2004;279(38):40185–93.

    Article  CAS  PubMed  Google Scholar 

  87. Smith SA, Sturm AC, Curran J, Kline CF, Little SC, Bonilla IM, et al. Dysfunction in the betaII spectrin-dependent cytoskeleton underlies human arrhythmia. Circulation. 2015;131(8):695–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Smith SA, Hughes LD, Kline CF, Kempton AN, Dorn LE, Curran J, et al. Dysfunction of the beta2-spectrin-based pathway in human heart failure. Am J Physiol Heart Circ Physiol. 2016;310(11):H1583–91.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Mohler PJ. Ankyrins and human disease: what the electrophysiologist should know. J Cardiovasc Electrophysiol. 2006;17(10):1153–9.

    Article  PubMed  Google Scholar 

  90. Koob R, Zimmermann M, Schoner W, Drenckhahn D. Colocalization and coprecipitation of ankyrin and Na+,K+-ATPase in kidney epithelial cells. Eur J Cell Biol. 1988;45(2):230–7.

    CAS  PubMed  Google Scholar 

  91. Bourguignon LY, Jin H, Iida N, Brandt NR, Zhang SH. The involvement of ankyrin in the regulation of inositol 1,4,5-trisphosphate receptor-mediated internal Ca2+ release from Ca2+ storage vesicles in mouse T-lymphoma cells. J Biol Chem. 1993;268(10):7290–7.

    Article  CAS  PubMed  Google Scholar 

  92. Davis JQ, McLaughlin T, Bennett V. Ankyrin-binding proteins related to nervous system cell adhesion molecules: candidates to provide transmembrane and intercellular connections in adult brain. J Cell Biol. 1993;121(1):121–33.

    Article  CAS  PubMed  Google Scholar 

  93. Li ZP, Burke EP, Frank JS, Bennett V, Philipson KD. The cardiac Na+-Ca2+ exchanger binds to the cytoskeletal protein ankyrin. J Biol Chem. 1993;268(16):11489–91.

    Article  CAS  PubMed  Google Scholar 

  94. Mohler PJ, Rivolta I, Napolitano C, LeMaillet G, Lambert S, Priori SG, et al. Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc Natl Acad Sci U S A. 2004;101(50):17533–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hortsch M, Nagaraj K, Godenschwege TA. The interaction between L1-type proteins and ankyrins--a master switch for L1-type CAM function. Cell Mol Biol Lett. 2009;14(1):57–69.

    Article  CAS  PubMed  Google Scholar 

  96. Li J, Kline CF, Hund TJ, Anderson ME, Mohler PJ. Ankyrin-B regulates Kir6.2 membrane expression and function in heart. J Biol Chem. 2010;285(37):28723–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cunha SR, Hund TJ, Hashemi S, Voigt N, Li N, Wright P, et al. Defects in ankyrin-based membrane protein targeting pathways underlie atrial fibrillation. Circulation. 2011;124(11):1212–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bennett V, Stenbuck PJ. The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes. Nature. 1979;280(5722):468–73.

    Article  CAS  PubMed  Google Scholar 

  99. Ipsaro JJ, Mondragon A. Structural basis for spectrin recognition by ankyrin. Blood. 2010;115(20):4093–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nassal D, Yu J, Min D, Lane C, Shaheen R, Gratz D, et al. Regulation of cardiac conduction and arrhythmias by ankyrin/spectrin-based macromolecular complexes. J Cardiovasc Dev Dis. 2021;8(5):48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sucharski HC, Dudley EK, Keith CBR, El Refaey M, Koenig SN, Mohler PJ. Mechanisms and alterations of cardiac ion channels leading to disease: role of ankyrin-B in cardiac function. Biomol Ther. 2020;10(2):211.

    CAS  Google Scholar 

  102. Baines AJ, Pinder JC. The spectrin-associated cytoskeleton in mammalian heart. Front Biosci. 2005;10:3020–33.

    Article  CAS  PubMed  Google Scholar 

  103. Wu HC, Yamankurt G, Luo J, Subramaniam J, Hashmi SS, Hu H, et al. Identification and characterization of two ankyrin-B isoforms in mammalian heart. Cardiovasc Res. 2015;107(4):466–77.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ayalon G, Hostettler JD, Hoffman J, Kizhatil K, Davis JQ, Bennett V. Ankyrin-B interactions with spectrin and dynactin-4 are required for dystrophin-based protection of skeletal muscle from exercise injury. J Biol Chem. 2011;286(9):7370–8.

    Article  CAS  PubMed  Google Scholar 

  105. Ayalon G, Davis JQ, Scotland PB, Bennett V. An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell. 2008;135(7):1189–200.

    Article  CAS  PubMed  Google Scholar 

  106. Mohler PJ, Hoffman JA, Davis JQ, Abdi KM, Kim CR, Jones SK, et al. Isoform specificity among ankyrins. An amphipathic alpha-helix in the divergent regulatory domain of ankyrin-b interacts with the molecular co-chaperone Hdj1/Hsp40. J Biol Chem. 2004;279(24):25798–804.

    Article  CAS  PubMed  Google Scholar 

  107. Cunha SR, Mohler PJ. Obscurin targets ankyrin-B and protein phosphatase 2A to the cardiac M-line. J Biol Chem. 2008;283(46):31968–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M, et al. TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J. 2004;23(13):2684–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Makara MA, Curran J, Little SC, Musa H, Polina I, Smith SA, et al. Ankyrin-G coordinates intercalated disc signaling platform to regulate cardiac excitability in vivo. Circ Res. 2014;115(11):929–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Makara MA, Curran J, Lubbers ER, Murphy NP, Little SC, Musa H, et al. Novel mechanistic roles for ankyrin-G in cardiac remodeling and heart failure. JACC Basic Transl Sci. 2018;3(5):675–89.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Mohler PJ, Bennett V. Ankyrin-based cardiac arrhythmias: a new class of channelopathies due to loss of cellular targeting. Curr Opin Cardiol. 2005;20(3):189–93.

    Article  PubMed  Google Scholar 

  112. Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421(6923):634–9.

    Article  CAS  PubMed  Google Scholar 

  113. Schott JJ, Charpentier F, Peltier S, Foley P, Drouin E, Bouhour JB, et al. Mapping of a gene for long QT syndrome to chromosome 4q25-27. Am J Hum Genet. 1995;57(5):1114–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Swayne LA, Murphy NP, Asuri S, Chen L, Xu X, McIntosh S, et al. Novel variant in the ANK2 membrane-binding domain is associated with ankyrin-B syndrome and structural heart disease in a first nations population with a high rate of long QT syndrome. Circ Cardiovasc Genet. 2017;10(1):e001537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhu W, Wang C, Hu J, Wan R, Yu J, Xie J, et al. Ankyrin-B Q1283H variant linked to arrhythmias via loss of local protein phosphatase 2A activity causes ryanodine receptor hyperphosphorylation. Circulation. 2018;138(23):2682–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Huq AJ, Pertile MD, Davis AM, Landon H, James PA, Kline CF, et al. A novel mechanism for human cardiac ankyrin-B syndrome due to reciprocal chromosomal translocation. Heart Lung Circ. 2017;26(6):612–8.

    Article  CAS  PubMed  Google Scholar 

  117. Roberts JD, Murphy NP, Hamilton RM, Lubbers ER, James CA, Kline CF, et al. Ankyrin-B dysfunction predisposes to arrhythmogenic cardiomyopathy and is amenable to therapy. J Clin Invest. 2019;129(8):3171–84.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Palade GE. Fine structure of blood capillaries. J Appl Phys. 1953;24(11):1424.

    Google Scholar 

  119. Parton RG, del Pozo MA. Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol. 2013;14(2):98–112.

    Article  CAS  PubMed  Google Scholar 

  120. Levin KR, Page E. Quantitative studies on plasmalemmal folds and caveolae of rabbit ventricular myocardial-cells. Circ Res. 1980;46(2):244–55.

    Article  CAS  PubMed  Google Scholar 

  121. Page E. Quantitative ultrastructural analysis in cardiac membrane physiology. Am J Physiol. 1978;235(5):C147–C58.

    Article  CAS  PubMed  Google Scholar 

  122. Murphy RM, Mollica JP, Lamb GD. Plasma membrane removal in rat skeletal muscle fibers reveals caveolin-3 hot-spots at the necks of transverse tubules. Exp Cell Res. 2009;315(6):1015–28.

    Article  CAS  PubMed  Google Scholar 

  123. Verma V. High-voltage electron microscopical evidence on the connection between transverse tubules and invaginations of plasma-membrane in frog skeletal-muscle. Biol Cell. 1985;53(3):A22-A.

    Google Scholar 

  124. Lee E, Marcucci MJ, Daniell L, Pypaert M, Weisz OA, Ochoa G, et al. Amphiphysin 2 (BIN1) and T-tubule biogenesis in muscle. Mol Biol Cell. 2002;13:460a–1a.

    Article  CAS  Google Scholar 

  125. Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C, Li MM, et al. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and T-tubule abnormalities. J Biol Chem. 2001;276(24):21425–33.

    Article  CAS  PubMed  Google Scholar 

  126. Tanaka S, Fujio Y, Nakayama H. Caveolae-specific CaMKII signaling in the regulation of voltage-dependent calcium channel and cardiac hypertrophy. Front Physiol. 2018;9:1081.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Pradhan BS, Proszynski TJ. A role for caveolin-3 in the pathogenesis of muscular dystrophies. Int J Mol Sci. 2020;21(22):8736.

    Article  CAS  PubMed Central  Google Scholar 

  128. Song KS, Scherer PE, Tang ZL, Okamoto T, Li SW, Chafel M, et al. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells - Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem. 1996;271(25):15160–5.

    Article  CAS  PubMed  Google Scholar 

  129. Wright PT, Nikolaev VO, O'Hara T, Diakonov I, Bhargava A, Tokar S, et al. Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling. J Mol Cell Cardiol. 2014;67:38–48.

    Article  CAS  PubMed  Google Scholar 

  130. Balijepalli RC, Kamp TJ. Caveolae, ion channels and cardiac arrhythmias. Prog Biophys Mol Biol. 2008;98(2–3):149–60.

    Article  CAS  PubMed  Google Scholar 

  131. Balijepalli RC, Foell JD, Hall DD, Hell JW, Kamp TJ. Localization of cardiac L-type Ca2+ channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation. Proc Natl Acad Sci U S A. 2006;103(19):7500–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Scriven DRL, Klimek A, Asghari P, Bellve K, Moore EDW. Caveolin-3 is adjacent to a group of extradyadic ryanodine receptors. Biophys J. 2005;89(3):1893–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xiao RP. Beta-adrenergic signaling in the heart: dual coupling of the beta2-adrenergic receptor to G(s) and G(i) proteins. Sci STKE. 2001;2001(104):re15.

    Article  CAS  PubMed  Google Scholar 

  134. Zou YZ, Komuro I, Yamazaki T, Kudoh S, Uozumi H, Kadowaki T, et al. Both G(s) and G(i) proteins are critically involved in isoproterenol-induced cardiomyocyte hypertrophy. J Biol Chem. 1999;274(14):9760–70.

    Article  CAS  PubMed  Google Scholar 

  135. Chesley A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta EG, et al. The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3 '-kinase. Circ Res. 2000;87(12):1172–9.

    Article  CAS  PubMed  Google Scholar 

  136. Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci U S A. 2001;98(4):1607–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Communal C, Singh K, Pimentel DR, Colucci WS. Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation. 1998;98(13):1329–34.

    Article  CAS  PubMed  Google Scholar 

  138. Singh K, Xiao L, Remondino A, Sawyer DB, Colucci WS. Adrenergic regulation of cardiac myocyte apoptosis. J Cell Physiol. 2001;189(3):257–65.

    Article  CAS  PubMed  Google Scholar 

  139. Zhang DY, Anderson AS. The sympathetic nervous system and heart failure. Cardiol Clin. 2014;32(1):33–45, vii.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Xiang Y, Rybin VO, Steinberg SF, Kobilka B. Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. J Biol Chem. 2002;277(37):34280–6.

    Article  CAS  PubMed  Google Scholar 

  141. Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P, Paur H, et al. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science. 2010;327(5973):1653–7.

    Article  CAS  PubMed  Google Scholar 

  142. Gorelik J, Wright PT, Lyon AR, Harding SE. Spatial control of the betaAR system in heart failure: the transverse tubule and beyond. Cardiovasc Res. 2013;98(2):216–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Song LS, Wang SQ, Xiao RP, Spurgeon H, Lakatta EG, Cheng H. Beta-adrenergic stimulation synchronizes intracellular Ca(2+) release during excitation-contraction coupling in cardiac myocytes. Circ Res. 2001;88(8):794–801.

    Article  CAS  PubMed  Google Scholar 

  144. Daaka Y, Luttrell LM, Lefkowitz RJ. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature. 1997;390(6655):88–91.

    Article  CAS  PubMed  Google Scholar 

  145. Devic E, Xiang Y, Gould D, Kobilka B. Beta-adrenergic receptor subtype-specific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice. Mol Pharmacol. 2001;60(3):577–83.

    CAS  PubMed  Google Scholar 

  146. Zamah AM, Delahunty M, Luttrell LM, Lefkowitz RJ. Protein kinase A-mediated phosphorylation of the beta 2-adrenergic receptor regulates its coupling to Gs and Gi. Demonstration in a reconstituted system. J Biol Chem. 2002;277(34):31249–56.

    Article  CAS  PubMed  Google Scholar 

  147. Hulme JT, Lin TWC, Westenbroek RE, Scheuer T, Catterall WA. Beta-adrenergic regulation requires direct anchoring of PKA to cardiac Ca(V)1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15. Proc Natl Acad Sci U S A. 2003;100(22):13093–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kapiloff MS, Jackson N, Airhart N. mAKAP and the ryanodine receptor are part of a multi-component signaling complex on the cardiomyocyte nuclear envelope. J Cell Sci. 2001;114(Pt 17):3167–76.

    Article  CAS  PubMed  Google Scholar 

  149. Lygren B, Carlson CR, Santamaria K, Lissandron V, McSorley T, Litzenberg J, et al. AKAP complex regulates Ca2+ re-uptake into heart sarcoplasmic reticulum. EMBO Rep. 2007;8(11):1061–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yang JC, Drazba JA, Ferguson DG, Bond M. A-kinase anchoring protein 100 (AKAP100) is localized in multiple subcellular compartments in the adult rat heart. J Cell Biol. 1998;142(2):511–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Makarewich CA, Correll RN, Gao H, Zhang H, Yang B, Berretta RM, et al. A caveolae-targeted L-type Ca(2)+ channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility. Circ Res. 2012;110(5):669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fu Y, Westenbroek RE, Scheuer T, Catterall WA. Basal and beta-adrenergic regulation of the cardiac calcium channel CaV1.2 requires phosphorylation of serine 1700. Proc Natl Acad Sci U S A. 2014;111(46):16598–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fu Y, Westenbroek RE, Scheuer T, Catterall WA. Phosphorylation sites required for regulation of cardiac calcium channels in the fight-or-flight response. Proc Natl Acad Sci U S A. 2013;110(48):19621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Haase H, Alvarez J, Petzhold D, Doller A, Behlke J, Erdmann J, et al. Ahnak is critical for cardiac Ca(v)1.2 calcium channel function and its beta-adrenergic regulation. FASEB J. 2005;19(14):1969–77.

    Article  CAS  PubMed  Google Scholar 

  155. Bunemann M, Gerhardstein BL, Gao T, Hosey MM. Functional regulation of L-type calcium channels via protein kinase A-mediated phosphorylation of the beta(2) subunit. J Biol Chem. 1999;274(48):33851–4.

    Article  CAS  PubMed  Google Scholar 

  156. Balijepalli RC, Foell JD, Hall DD, Hell JW, Kamp TJ. Localization of cardiac L-type Ca(2+) channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation. Proc Natl Acad Sci U S A. 2006;103(19):7500–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Karam S, Margaria JP, Bourcier A, Mika D, Varin A, Bedioune I, et al. Cardiac overexpression of PDE4B blunts beta-adrenergic response and maladaptive remodeling in heart failure. Circulation. 2020;142(2):161–74.

    Article  CAS  PubMed  Google Scholar 

  158. Lehnart SE, Wehrens XH, Reiken S, Warrier S, Belevych AE, Harvey RD, et al. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell. 2005;123(1):25–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Leroy J, Richter W, Mika D, Castro LR, Abi-Gerges A, Xie M, et al. Phosphodiesterase 4B in the cardiac L-type Ca(2)(+) channel complex regulates Ca(2)(+) current and protects against ventricular arrhythmias in mice. J Clin Invest. 2011;121(7):2651–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kerfant BG, Zhao D, Lorenzen-Schmidt I, Wilson LS, Cai S, Chen SRW, et al. PI3K gamma is required for PDE4, not PDE3, activity in subcellular microdomains containing the sarcoplasmic reticular calcium ATPase in cardiomyocytes. Circ Res. 2007;101(4):400–8.

    Article  CAS  PubMed  Google Scholar 

  161. Laury-Kleintop LD, Mulgrew JR, Heletz I, Nedelcoviciu RA, Chang MY, Harris DM, et al. Cardiac-specific disruption of Bin1 in mice enables a model of stress- and age-associated dilated cardiomyopathy. J Cell Biochem. 2015;116(11):2541–51.

    Article  CAS  PubMed  Google Scholar 

  162. Parton RG, Way M, Zorzi N, Stang E. Caveolin-3 associates with developing T-tubules during muscle differentiation. J Cell Biol. 1997;136(1):137–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lo HP, Lim Y-W, Xiong Z, Martel N, Ferguson C, Ariotti NR, et al. Muscle-specific Cavin4 interacts with Bin1 to promote T-tubule formation and stability in developing skeletal muscle. bioRxiv. 2021:2021.01.13.426456.

    Google Scholar 

  164. Cronk LB, Ye B, Kaku T, Tester DJ, Vatta M, Makielski JC, et al. Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm. 2007;4(2):161–6.

    Article  PubMed  Google Scholar 

  165. Zhu W, Petrashevskaya N, Ren S, Zhao A, Chakir K, Gao E, et al. Gi-biased beta2AR signaling links GRK2 upregulation to heart failure. Circ Res. 2012;110(2):265–74.

    Article  CAS  PubMed  Google Scholar 

  166. Bryant SM, Kong CHT, Watson JJ, Gadeberg HC, James AF, Cannell MB, et al. Caveolin 3-dependent loss of t-tubular ICa during hypertrophy and heart failure in mice. Exp Physiol. 2018;103(5):652–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hayashi T, Arimura T, Ueda K, Shibata H, Hohda S, Takahashi M, et al. Identification and functional analysis of a caveolin-3 mutation associated with familial hypertrophic cardiomyopathy. Biochem Biophys Res Commun. 2004;313(1):178–84.

    Article  CAS  PubMed  Google Scholar 

  168. Traverso M, Gazzerro E, Assereto S, Sotgia F, Biancheri R, Stringara S, et al. Caveolin-3 T78M and T78K missense mutations lead to different phenotypes in vivo and in vitro. Lab Investig. 2008;88(3):275–83.

    Article  CAS  PubMed  Google Scholar 

  169. Makarewich CA, Correll RN, Gao H, Zhang HY, Yang BH, Berretta RM, et al. A caveolae-targeted L-type Ca2+ channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility. Circ Res. 2012;110(5):669–U60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Tonegawa K, Otsuka W, Kumagai S, Matsunami S, Hayamizu N, Tanaka S, et al. Caveolae-specific activation loop between CaMKII and L-type Ca2+ channel aggravates cardiac hypertrophy in alpha(1)-adrenergic stimulation. Am J Physiol Heart Circ Physiol. 2017;312(3):H501–H14.

    Article  PubMed  Google Scholar 

  171. Zaza A, Grandi E. Mechanisms of Cav3-associated arrhythmia: protein or microdomain dysfunction? Int J Cardiol. 2020;320:97–9.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Tyan L, Foell JD, Vincent KP, Woon MT, Mesquitta WT, Lang D, et al. Long QT syndrome caveolin-3 mutations differentially modulate K(v)4 and Ca(v)1.2 channels to contribute to action potential prolongation. J Physiol London. 2019;597(6):1531–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Guo J, Wang T, Li X, Shallow H, Yang T, Li W, et al. Cell surface expression of human ether-a-go-go-related gene (hERG) channels is regulated by caveolin-3 protein via the ubiquitin ligase Nedd4-2. J Biol Chem. 2012;287(40):33132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TingTing Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J., Richmond, B., Hong, T. (2022). Organization of Ca2+ Signaling Microdomains in Cardiac Myocytes. In: Parinandi, N.L., Hund, T.J. (eds) Cardiovascular Signaling in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-08309-9_2

Download citation

Publish with us

Policies and ethics