Skip to main content

Modelling a Polluted Aquifer with Reconstructed Heterogeneity Using the Composite Medium Indicator Kriging

  • Chapter
  • First Online:
Instrumentation and Measurement Technologies for Water Cycle Management

Part of the book series: Springer Water ((SPWA))

  • 433 Accesses

Abstract

Stochastic hydrology can be a powerful instrument to quantify uncertainty in complicated geological structures, since numerical models must accommodate high levels of material heterogeneity. The possibility to provide for the behavior of groundwater systems under specific conditions, thanks to a realistic representation of the hydraulic properties and geometries in a mathematical model, is the basis for a conscious management of engineering, economic, social and political problems which are typical of remediation actions. The composite media theory which allows the estimation of the spatial distribution of multiple materials, even when the medium is highly heterogeneous, is presented. The probabilistic reconstruction of boundaries between geologic facies is applied to the mathematical model of the contaminated aquifer involved by the industrial site of the city of Naples. Sedimentologic information led to the identification of different types of geomaterials, whose spatial variability is analyzed through the indexed variables approach. The hydraulic conductivity distribution is then estimated through a geostatistical analysis, and the values are calibrated as a function of the observed hydraulic heads. The realistic reconstruction of the morphology and the hydrodynamic characteristics of a polluted site within a modeling tool, gives a fundamental help to design efficient remediation processes, without causing unacceptable perturbation of the natural conditions of the sites and excessive costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboufirassi M, Marino MA (1984) Cokriging of aquifer transmissivities from field measurements of transmissivity and specific capacity. J Int Assoc Math Geol 16(1):19–35

    Article  Google Scholar 

  2. Ahmed S, de Marsily G (1987) Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity. Water Resour Res 23(9):1717–1737

    Article  ADS  Google Scholar 

  3. Ahmed S, de Marsily G (1988) Combined use of hydraulic and electrical properties of an aquifer in a geostatistical estimation of transmissivity. Ground Water 26(1):78–86

    Article  Google Scholar 

  4. Ahmed S, de Marsily G (1993) Co-kriged estimation of aquifer transmissivity as an indirect solution of inverse problem: a practical approach. Water Resour Res 29(2):521–530

    Article  ADS  Google Scholar 

  5. Allocca V, Celico P (2004) Risorse termali e minerali della provincia di Napoli. Assessorato Industria, Energia, Miniere e Risorse Geotermiche, Provincia di Napoli

    Google Scholar 

  6. Allocca V, Celico P (2004) Carta idrogeologica della provincia di Napoli (scala 1: 50.000). Assessorato Industria, Energia, Miniere e Risorse Geotermiche, Provincia di Napoli

    Google Scholar 

  7. Allocca V, Celico P (2008) Scenari idrodinamici nella piana ad Oriente di Napoli (Italia), nell’ultimo secolo: cause e problematiche idrogeologiche connesse. Giornale di Geologia applicata 9(2):175–198

    Google Scholar 

  8. Bellucci F, Corniello A, de Riso R, Russo D (1990) Idrogeologia della piana a N-E di Napoli. Mem Soc Geol It 45:339–349

    Google Scholar 

  9. Carrera J,·Alcolea A,·Medina A, Hidalgo J,·Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13:206–222

    Google Scholar 

  10. Celico F, Celico P, Esposito L, Guadagno FM, Habetswallner F and Mele R (1995) Sull’evoluzione idrogeologica dell’area del Sebeto (Campania). In: Proceedings of the I° national conference of applied geology, Taormina (Italy), Vol. 30

    Google Scholar 

  11. Celico F, Esposito L, Mancuso M (2001) Complessità idrodinamica e idrochimica dell’area urbana di Napoli: scenari interpretativi. Geologia Tecnica & Ambientale 2

    Google Scholar 

  12. Celico F, Petrella E, Celico P (2006) Hydrogeological behavior of some fault zones in a carbonate aquifer of Southern Italy: an experimentally-based model. Terra Nova 18:308–313

    Article  ADS  CAS  Google Scholar 

  13. Celico P (1983) Idrogeologia dei massicci carbonatici, delle piane quaternarie e delle aree vulcaniche dell’Italia centro-meridionale (Marche e Lazio meridionali, Abruzzo, Molise e Campania). Quaderni della Cassa per il Mezzogiorno 4(2):1–225

    Google Scholar 

  14. Celico P (1990) Brevi considerazioni sulle possibili cause dell’aumento del tenore in nitrati, ferro e manganese nella falda di Lufrano. L’Appennino Meridionale, Napoli

    Google Scholar 

  15. Celico P, De Paola P (1992) La falda dell’area napoletana: ipotesi sui meccanismi naturali di protezione e sulle modalità di inquinamento - Studi e Ricerche. Atti Giorn. di Studio: “Acque per uso potabile”. Proposta per la tutela ed il controllo della qualità, 387C-412C

    Google Scholar 

  16. Celico P, Esposito L, De Gennaro A, Mastrangelo E (1994) La falda ad Oriente della città di Napoli: idrodinamica e qualità delle acque. Geologica Romana, Vol. 30, 653–660

    Google Scholar 

  17. Celico P, Esposito L, Guadagno GM (1997) Sulla qualità delle acque sotterranee nell’acquifero del settore orientale della Piana Campana. Geologia Tecnica e Ambientale, 4/97

    Google Scholar 

  18. Certes C, de Marsily G (1991) Application of the pilot point method to the identification of aquifer transmissivity. Adv Water Resour 14(5):284–300

    Article  ADS  Google Scholar 

  19. Chiles JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York, p 695

    Book  MATH  Google Scholar 

  20. Civita M, de Medici GB, de Riso R, Nicotera P and d’Elogio EN (1973) Carta idrogeologica della Campania Nord-Occidentale - Memoria descrittiva. In: Proceedings of the II groundwater internazional conference, Palermo (Italy), I.A.H.

    Google Scholar 

  21. Corniello A, Ducci D (2002) Hazardous piezometric levels rising in Naples urban area (Italy) as a consequence of overexploitation reduction. In: Proceedings of the SINEX, symposium of intensive use of groundwater, Valencia (Spain), December, 1–10

    Google Scholar 

  22. Corniello A, de Riso R, Ducci D (1990) Idrogeologia e idrogeochimica della Piana Campana. Mem Soc Geol It 45

    Google Scholar 

  23. Corniello A, Ducci D, Catapano O, Monti GM (2003) Variazioni piezometriche nella zona orientale della città di Napoli. Quaderni di Geologia Applicata 10(2):43–57

    Google Scholar 

  24. Delbari M, Amiri M, Motlagh MB (2014) Assessing groundwater quality for irrigation using indicator kriging method. Appl Water Sci 9. https://doi.org/10.1007/s13201-014-0230-6

  25. Delhomme JP (1976) Application de la théorie des variables régionalisées dans les sciences de l’eau [Application of the theory of regionalized variables to water sciences]. Doctoral thesis, University Paris VI

    Google Scholar 

  26. Delhomme JP (1978) Kriging in hydrosciences. Adv Water Resour 1(5):251–266

    Article  ADS  Google Scholar 

  27. Delhomme JP (1979) Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach. Water Resour Res 15(2):269–280

    Article  ADS  Google Scholar 

  28. de Marsily G (1978) De l’identification des systémes hydrologiques [On the calibration of hydrologic systems]. Doctoral thesis, University Paris VI

    Google Scholar 

  29. de Marsily G (1986) Quantitative hydrogeology. In: Groundwater hydrology for engineers. Academic, New York, pp 440

    Google Scholar 

  30. de Marsily G, Delhomme JP, Coudrain-Ribstein A, Lavenue AM (2000) Four decades of inverse problems in hydrogeology. In: Zhang D, Winter CL (eds) Theory, modeling, and field investigation in hydrogeology. Geol Soc America Special Paper 348:1–17

    Google Scholar 

  31. de Marsily G,·Delay F, Gonçalvés J, Renard P, Teles V, Violette S (2005) Dealing with spatial heterogeneity. Hydrogeol J 13:161–183

    Google Scholar 

  32. Deutsch CV, Journel AG (1998) GSLIB. Oxford, Oxford University Press, Geostatistical Software Library and User’s Guide

    Google Scholar 

  33. Doherty J (2006) PEST Model-Independent Parameter Estimation, V10.1, Bethesda, Papadopulos. S. S., Inc., Md., (Available at http://www.sspa.com/pest/)

  34. Ducci D, Condesso de Melo MT, Preziosi E, Sellerino M, Parrone D, Ribeiro L (2016) Combining natural background levels (NBLs) assessment with indicator kriging analysis to improve groundwater quality data interpretation and management. Sci Total Environ 569–570:569–584

    Google Scholar 

  35. Esposito L (1998) Nuove conoscenze sulle caratteristiche idrogeochimiche della falda ad Oriente della città di Napoli (Campania). Quaderni di Geologia Applicata, Pitagora Editrice,5-1/98

    Google Scholar 

  36. Esposito L, Piscopo V (1997) Groundwater flow evolution in the circumVesuvian plain, Italy. British Committée XXVII Congress. Nottingham, 21–27 September. In “Groundwater in the Urban Environment, Vol. I, Nottingham, IAH, Edited by John Chilton

    Google Scholar 

  37. Fiorelli T (1926) Cenni sull’andamento della falda acquifera nel sottosuolo della zona tra Napoli e Somigliano d’Arco in relazione alla costituzione geologica e la topografia e idrologia superficiale del territorio medesimo. Annuali del genio Civile, VII

    Google Scholar 

  38. Freeze RA (1975) A stochastic-conceptual analysis of one-dimensional groundwater flow in non-uniform homogeneous media. Water Resour Res 11(5):725–741

    Article  ADS  Google Scholar 

  39. Gelhar LW (1976) Effects of hydraulic conductivity variation on groundwater flow. In: Second international symposium on stochastic hydraulics, International Association for Hydraulic Research, Lund, Sweden

    Google Scholar 

  40. Guadagnini A, Neuman SP (1999) Nonlocal and localized analyses of conditional mean steady state flow in bounded, randomly nonuniform domains. 1 Computational examples. Water Resources Res 35:3019–3040

    Article  ADS  Google Scholar 

  41. Guadagnini L, Guadagnini A, Tartakovsky DM (2004) Probabilistic reconstruction of geologic facies. J Hydrol 294:57–67

    Article  MATH  Google Scholar 

  42. Hill MC, Banta ER, Harbaugh AW, Anderman ER (2000) MODFLOW-2000, the U.S. Geological Survey modular groundwater model—User guide to the observation, sensitivity, and parameter estimation processes and three post-processing programs. U.S. Geol. Surv. Open File Rep., 00–184, pp 209

    Google Scholar 

  43. Kashyap RL (1982) Optimal choice of AR and MA parts in autoregressive moving average models. IEEE Trans Pattern Anal Mach Intel 4(2):99–104

    Article  CAS  MATH  Google Scholar 

  44. Journel AG (1983) Nonparametric estimation of spatial distribution. Math Geol 15(3):445–468

    Article  MathSciNet  Google Scholar 

  45. Journel AG, Alabert FG (1990) New method for reservoir mapping. J Pet Technol February 42(2):212–218

    Google Scholar 

  46. Journel AG, Gomez-Hernandez J (1993) Stochatic imaging of the Wilmington clastic sequence. Soc Pet Eng Form Eval March 8(1):33–40

    Google Scholar 

  47. Journel AG, Isaaks EK (1984) Conditional indicator simulation: application to a Saskatcheouan uranium deposit. Math Geol 16(7):685–718

    Article  CAS  Google Scholar 

  48. Lavenue AM, Ramarao BS, de Marsily G, Marietta MG (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: part 2: application. Water Resour Res 31(3):495–516

    Article  ADS  Google Scholar 

  49. Lavenue MA, de Marsily G (2001) Three-dimensional interference test interpretation in a fractured/unfractured aquifer using the pilot point inverse method. Water Resour Res 37(11):2659–2675

    ADS  Google Scholar 

  50. Marzano V (2001) Applicazione e confronto dei metodi SINTACS e TOT per la valutazione della vulnerabilità all’inquinamento dell’acquifero piroclastico nel settore sud-orientale della Piana Campana. Experimental thesis, Università degli Studi di Napoli Federico II

    Google Scholar 

  51. Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266

    Article  CAS  Google Scholar 

  52. Matheron G (1965) Les variables r_gionalis_es et leur estimation [Regionalized variables and their estimation]. Masson, Paris, p 185

    Google Scholar 

  53. Medina-Ortega P, Morales-Casique E, Hernández-Espriú A (2019) Sequential indicator simulation for a three-dimensional distribution of hydrofacies in a volcano-sedimentary aquifer in Mexico City. Hydrogeol J 27:2581–2593

    Article  ADS  CAS  Google Scholar 

  54. Mohammadpour M, Bahroudi A, Abedi M, Rahimipour G, Jozanikohan G, Khalifani FM (2019) Geochemical distribution mapping by combining number-size multifractal model and multiple indicator kriging. J Geochem Explor 200:13–26

    Article  CAS  Google Scholar 

  55. North-Western Basin Authority of the Campania Region (2004) Il contributo al Piano di Tutela delle Acque della Regione Campania. Voll. 1, 2, 3, Naples

    Google Scholar 

  56. Paoletti (2009) Il bilancio idrologico, studio di fattibilità per la realizzazione degli interventi di messa in sicurezza di emergenza della falda acquifera, Ministero dell’Ambiente della Tutela del Territorio e del Mare, SOGESID

    Google Scholar 

  57. Piscopo V, Baiocchi A, Fantucci R, Lotti F (2005) La risposta al pompaggio di acquiferi vulcanici: alcuni esempi delle aree napoletane e viterbese. Italian J Eng Geol Environ 1:21–35

    Google Scholar 

  58. Ramarao BS, Lavenue AM, de Marsily G, Marietta MG (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: part 1—theory and computational experiments. Water Resour Res 31:3475–3493

    Article  Google Scholar 

  59. Raoult Y (1999) La nappe de l’Albien dans le bassin de Paris: de nouvelles idées pour de vieilles eaux [The Albian aquifer in the Paris basin: new ideas for old waters]). Doctoral thesis, University Pierre et Marie Curie, Paris VI, pp 170

    Google Scholar 

  60. Rivoirard J (2000) Cours de géostatistique multivariable [Lecture notes for multivariate geosatistics]. Note C-172, Ecole des Mines de Paris, Centre de Géostatistique, Fontainebleau

    Google Scholar 

  61. Roth C, Chilés JP, de Fouquet C (1998) Combining geostatistics and flow simulators to identify transmissivity. Adv Water Resour 21:555–565

    Article  ADS  Google Scholar 

  62. Sakata Y, Katsura T, Nagano K (2020) Estimation of ground thermal conductivity through indicator kriging: nation-scale application and vertical profile analysis in Japan. Geothermics 88:101881

    Article  Google Scholar 

  63. Smith L, Freeze RA (1979) Stochastic analysis of steady state groundwater flow in a bounded domain. 1. One-dimensional simulations. 2. Two-dimensional simulations. Water Resour Res 15(3):521–528 and 15(6):1543–1559

    Google Scholar 

  64. Straface S, Rizzo E, Chidichimo F (2010) Estimation of water table map and hydraulic conductivity in a large-scale model by means of the SP method. J Geophys Res 115. https://doi.org/10.1029/2009JB007053

  65. Straface S, Chidichimo F, Rizzo E, Riva M, Barrash W, Revil A, Cardiff M, Guadagnini A (2011) Joint inversion of steady-state hydrologic and self-potential data for 3D hydraulic conductivity distribution at the Boise hydrogeophysical research site. J Hydrol 407:115–128

    Article  Google Scholar 

  66. Tedeschi C (1974) Ravvenamento di pozzi artesiani e nuova trivellazione profonda per la Centrale Termoelettrica di Napoli Levante. Rivista Italiana di Geotecnica 8(4):221–231

    Google Scholar 

  67. Viparelli C (1967) Le acque sotterranee. In: Proceedings of the VIII Convegno di Geotecnica, Cagliari, ESI- Edizione Scientifiche Italiane

    Google Scholar 

  68. Viparelli M (1978) Le acque sotterranee ad oriente di Napoli. Fondazione Politecnica per il Mezzogiorno d’Italia, Napoli, p 111

    Google Scholar 

  69. Winter CL, Tartakovsky DM (2000) Mean flow in composite porous media. Geophys Res Lett 27:1759–1762

    Article  ADS  Google Scholar 

  70. Winter CL, Tartakovsky DM (2002) Groundwater flow in heterogeneous composite aquifers. Water Resources Res 38(8). https://doi.org/10.1029/2001WR000450

  71. Zheng C (1990) MT3D, A modular three-dimensional transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. Report, Rockville, Maryland: S.S. Papadopulos & Associates

    Google Scholar 

  72. Zimmerman DA, de Marsily G, Gotaway CA, Marietta MG, Axness CL, Beauheim R, Bras R, Carrera J, Dagan G, Davies PB, Gallegos D, Galli A, Gomez-Hernandez J, Grindrod P, Gutjahr AL, Kitanidis P, Lavenue AM, McLaughlin D, Neuman SP, Ramarao BS, Ravenne C, Rubin Y (1998) A comparison of seven geostatistically-based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resour Res 34(6):1373–1414

    Article  ADS  CAS  Google Scholar 

Download references

Acknowldgement

The study has been performed in the framework of a research agreement with the Ministry of the Environment, Land and Sea Protection and SOGESID. The authors thank the late prof. Celico P. for his support on the recognition of the geological data of Naples aquifer, and the anonynomous reviewer for his/her fruitful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Straface .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chidichimo, F., De Biase, M., Straface, S. (2022). Modelling a Polluted Aquifer with Reconstructed Heterogeneity Using the Composite Medium Indicator Kriging. In: Di Mauro, A., Scozzari, A., Soldovieri, F. (eds) Instrumentation and Measurement Technologies for Water Cycle Management . Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-08262-7_24

Download citation

Publish with us

Policies and ethics