Skip to main content

Genomics: Past, Present, and Future

  • Chapter
  • First Online:
Global Perspectives in Ocular Oncology

Abstract

Retinoblastoma is the prototypic genetic cancer, revealing much about the fundamentals of cancer genomics over the past 50 years. The majority of retinoblastoma tumors are initiated by biallelic loss (M1 and M2) of the retinoblastoma tumor suppressor gene, with progression driven by subsequent recurrent genomic changes (M3 to Mn). Knowledge of retinoblastoma genetics has transformed all aspects of clinical care. High-sensitivity molecular RB1 testing and counseling stratify both ocular and second cancer risks for the proband and family members. Prenatal diagnosis of familial retinoblastoma enables early detection of tumors and improves outcomes. Aqueous humor is a promising “liquid biopsy” with potential diagnostic and prognostic applications. Current advances in retinoblastoma genomics will pave the way toward individualized, precision medicine in which early intervention follows subclinical detection. Outcomes for children and families will be optimized through collaborative, multicenter, prospective clinical trials, targeted molecular therapies, and genotypic prognostication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68(4):820–3.

    Article  Google Scholar 

  2. Comings DE. A general theory of carcinogenesis. Proc Natl Acad Sci U S A. 1973;70(12):3324–8.

    Article  CAS  Google Scholar 

  3. Yunis JJ, Ramsay N. Retinoblastoma and subband deletion of chromosome 13. Am J Dis Child. 1978;132(2):161–3.

    CAS  Google Scholar 

  4. Connolly MJ, Payne RH, Johnson G, Gallie BL, Allderdice PW, Marshall WH, et al. Familial, EsD-linked, retinoblastoma with reduced penetrance and variable expressivity. Hum Genet. 1983;65(2):122–4.

    Article  CAS  Google Scholar 

  5. Godbout R, Dryja TP, Squire J, Gallie BL, Phillips RA. Somatic inactivation of genes on chromosome 13 is a common event in retinoblastoma. Nature. 1983;304(5925):451–3.

    Article  CAS  Google Scholar 

  6. Halloran SL, Boughman JA, Dryja TP, Mukai S, Long D, Roberts DF, et al. Accuracy of detection of the retinoblastoma gene by esterase D linkage. Arch Ophthalmol. 1985;103(9):1329–31.

    Article  CAS  Google Scholar 

  7. Sparkes RS, Murphree AL, Lingua RW, Sparkes MC, Field LL, Funderburk SJ, et al. Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to Esterase D. Science. 1983;219:971–2.

    Article  CAS  Google Scholar 

  8. Wilson MG, Ebbin AJ, Towner JW, Spencer WH. Chromosomal anomalies in patients with retinoblastoma. Clin Genet. 1977;12(1):1–8.

    Article  CAS  Google Scholar 

  9. Knight LA, Gardner HA, Gallie BL. Segregation of chromosome 13 in retinoblastoma. Lancet. 1978;1(8071):989.

    Article  CAS  Google Scholar 

  10. Sparkes RS, Muller H, Klisak I. Retinoblastoma with 13q- chromosomal deletion associated with maternal paracentric inversion of 13q. Science. 1979;203(4384):1027–9.

    Article  CAS  Google Scholar 

  11. Sparkes RS, Sparkes MC, Wilson MG, Towner JW, Benedict W, Murphree AL, et al. Regional assignment of genes for human esterase D and retinoblastoma to chromosome band 13q14. Science. 1980;208(4447):1042–4.

    Article  CAS  Google Scholar 

  12. Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature. 1983;305(5937):779–84.

    Article  CAS  Google Scholar 

  13. Dryja TP, Cavenee W, White R, Rapaport JM, Petersen R, Albert DM, et al. Homozygosity of chromosome 13 in retinoblastoma. N Engl J Med. 1984;310(9):550–3.

    Article  CAS  Google Scholar 

  14. Dryja TP, Rapaport JM, Joyce JM, Petersen RA. Molecular detection of deletions involving band q14 of chromosome 13 in retinoblastomas. Proc Natl Acad Sci U S A. 1986;83(19):7391–4.

    Article  CAS  Google Scholar 

  15. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature. 1986;323(6089):643–6.

    Article  CAS  Google Scholar 

  16. Dryja TP, Friend S, Weinberg RA. Genetic sequences that predispose to retinoblastoma and osteosarcoma. Symp Fundam Cancer Res. 1986;39:115–9.

    CAS  Google Scholar 

  17. Lee WH, Bookstein R, Hong F, Young LJ, Shew JY, Lee EY. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science. 1987;235(4794):1394–9.

    Article  CAS  Google Scholar 

  18. Lee WH, Shew JY, Hong FD, Sery TW, Donoso LA, Young LJ, et al. The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature. 1987;329(6140):642–5.

    Article  CAS  Google Scholar 

  19. Fung YK, Murphree AL, T’Ang A, Qian J, Hinrichs SH, Benedict WF. Structural evidence for the authenticity of the human retinoblastoma gene. Science. 1987;236(4809):1657–61.

    Article  CAS  Google Scholar 

  20. Temming P, Viehmann A, Arendt M, Eisele L, Spix C, Bornfeld N, et al. Pediatric second primary malignancies after retinoblastoma treatment. Pediatr Blood Cancer. 2015;62(10):1799–804.

    Article  Google Scholar 

  21. MacCarthy A, Bayne AM, Draper GJ, Eatock EM, Kroll ME, Stiller CA, et al. Non-ocular tumours following retinoblastoma in Great Britain 1951 to 2004. Br J Ophthalmol. 2009;93(9):1159–62.

    Article  CAS  Google Scholar 

  22. Vogel F. Genetics of retinoblastoma. Hum Genet. 1979;52(1):1–54.

    Article  CAS  Google Scholar 

  23. Lohmann DR, Gerick M, Brandt B, Oelschlager U, Lorenz B, Passarge E, et al. Constitutional RB1-gene mutations in patients with isolated unilateral retinoblastoma. Am J Hum Genet. 1997;61(2):282–94.

    Article  CAS  Google Scholar 

  24. Dryja TP, Morrow JF, Rapaport JM. Quantification of the paternal allele bias for new germline mutations in the retinoblastoma gene. Hum Genet. 1997;100(3–4):446–9.

    Article  CAS  Google Scholar 

  25. Dryja TP, Mukai S, Petersen R, Rapaport JM, Walton D, Yandell DW. Parental origin of mutations of the retinoblastoma gene. Nature. 1989;339:556–8.

    Article  CAS  Google Scholar 

  26. Zhu XP, Dunn JM, Phillips RA, Goddard AD, Paton KE, Becker A, et al. Preferential germline mutation of the paternal allele in retinoblastoma. Nature. 1989;340(6231):312–3.

    Article  CAS  Google Scholar 

  27. Rushlow DE, Mol BM, Kennett JY, Yee S, Pajovic S, Theriault BL, et al. Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. Lancet Oncol. 2013;14(4):327–34.

    Article  CAS  Google Scholar 

  28. Hong FD, Huang H-JS, To H, Young LJ, Oro A, Bookstein R, et al. Structure of the human retinoblastoma gene. Proc Natl Acad Sci U S A. 1989;86:5502–6.

    Article  CAS  Google Scholar 

  29. McGee TL, Yandell DW, Dryja TP. Structure and partial genomic sequence of the human retinoblastoma susceptibility gene. Gene. 1989;80:119–28.

    Article  CAS  Google Scholar 

  30. Toguchida J, McGee TL, Paterson JC, Eagle JR, Tucker S, Yandell DW, et al. Complete genomic sequence of the human retinoblastoma susceptibility gene. Genomics. 1993;17(3):535–43.

    Article  CAS  Google Scholar 

  31. Lohmann DR, Brandt B, Hopping W, Passarge E, Horsthemke B. The spectrum of RB1 germ-line mutations in hereditary retinoblastoma. Am J Hum Genet. 1996;58(5):940–9.

    CAS  Google Scholar 

  32. Lohmann DR. RB1 gene mutations in retinoblastoma. Hum Mutat. 1999;14(4):283–8.

    Article  CAS  Google Scholar 

  33. Valverde JR, Alonso J, Palacios I, Pestana A. RB1 gene mutation up-date, a meta-analysis based on 932 reported mutations available in a searchable database. BMC Genet. 2005;6:53.

    Article  Google Scholar 

  34. Dommering CJ, Mol BM, Moll AC, Burton M, Cloos J, Dorsman JC, et al. RB1 mutation spectrum in a comprehensive nationwide cohort of retinoblastoma patients. J Med Genet. 2014;51(6):366–74.

    Article  CAS  Google Scholar 

  35. Taylor M, Dehainault C, Desjardins L, Doz F, Levy C, Sastre X, et al. Genotype-phenotype correlations in hereditary familial retinoblastoma. Hum Mutat. 2007;28(3):284–93.

    Article  Google Scholar 

  36. Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE. Nonsense-mediated decay approaches the clinic. Nat Genet. 2004;36(8):801–8.

    Article  CAS  Google Scholar 

  37. Mitter D, Ullmann R, Muradyan A, Klein-Hitpass L, Kanber D, Ounap K, et al. Genotype-phenotype correlations in patients with retinoblastoma and interstitial 13q deletions. Eur J Hum Genet. 2011;19(9):947–58.

    Article  Google Scholar 

  38. Richter S, Vandezande K, Chen N, Zhang K, Sutherland J, Anderson J, et al. Sensitive and efficient detection of RB1 gene mutations enhances care for families with retinoblastoma. Am J Hum Genet. 2003;72(2):253–69.

    Article  CAS  Google Scholar 

  39. Greger V, Passarge E, Hopping W, Messmer E, Horsthemke B. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet. 1989;83(2):155–8.

    Article  CAS  Google Scholar 

  40. Ohtani-Fujita N, Dryja TP, Rapaport JM, Fujita T, Matsumura S, Ozasa K, et al. Hypermethylation in the retinoblastoma gene is associated with unilateral, sporadic retinoblastoma. Cancer Genet Cytogenet. 1997;98(1):43–9.

    Article  CAS  Google Scholar 

  41. Greger V, Debus N, Lohmann D, Hopping W, Passarge E, Horsthemke B. Frequency and parental origin of hypermethylated RB1 alleles in retinoblastoma. Hum Genet. 1994;94(5):491–6.

    Article  CAS  Google Scholar 

  42. Raizis AM, Racher HM, Foucal A, Dimaras H, Gallie BL, George PM. DNA hypermethylation/boundary control loss identified in retinoblastomas associated with genetic and epigenetic inactivation of the RB1 gene promoter. Epigenetics. 2021;16(9):940–54.

    Article  CAS  Google Scholar 

  43. Zhang K, Nowak I, Rushlow D, Gallie BL, Lohmann DR. Patterns of missplicing caused by RB1 gene mutations in patients with retinoblastoma and association with phenotypic expression. Hum Mutat. 2008;29(4):475–84.

    Article  CAS  Google Scholar 

  44. Soliman SE, Dimaras H, Khetan V, Gardiner JA, Chan HS, Heon E, et al. Prenatal versus postnatal screening for familial retinoblastoma. Ophthalmology. 2016;123(12):2610–7.

    Article  Google Scholar 

  45. Dommering CJ, Marees T, van der Hout AH, Imhof SM, Meijers-Heijboer H, Ringens PJ, et al. RB1 mutations and second primary malignancies after hereditary retinoblastoma. Fam Cancer. 2012;11(2):225–33.

    Article  CAS  Google Scholar 

  46. Lohmann DR, Brandt B, Hopping W, Passarge E, Horsthemke B. Distinct RB1 gene mutations with low penetrance in hereditary retinoblastoma. Hum Genet. 1994;94:349–54.

    Article  CAS  Google Scholar 

  47. Otterson GA, Chen W, Coxon AB, Khleif SN, Kaye FJ. Incomplete penetrance of familial retinoblastoma linked to germ-line mutations that result in partial loss of RB function. Proc Natl Acad Sci U S A. 1997;94(22):12036–40.

    Article  CAS  Google Scholar 

  48. Kratzke RA, Otterson GA, Hogg A, Coxon AB, Geradts J, Cowell JK, et al. Partial inactivation of the RB product in a family with incomplete penetrance of familial retinoblastoma and benign retinal tumors. Oncogene. 1994;9(5):1321–6.

    CAS  Google Scholar 

  49. Harbour JW. Molecular basis of low-penetrance retinoblastoma. Arch Ophthalmol. 2001;119(11):1699–704.

    Article  CAS  Google Scholar 

  50. Albrecht P, Ansperger-Rescher B, Schuler A, Zeschnigk M, Gallie B, Lohmann DR. Spectrum of gross deletions and insertions in the RB1 gene in patients with retinoblastoma and association with phenotypic expression. Hum Mutat. 2005;26(5):437–45.

    Article  CAS  Google Scholar 

  51. Bremner R, Du DC, Connolly-Wilson MJ, Bridge P, Ahmad KF, Mostachfi H, et al. Deletion of RB exons 24 and 25 causes low-penetrance retinoblastoma. Am J Hum Genet. 1997;61(3):556–70.

    Article  CAS  Google Scholar 

  52. Schubert EL, Strong LC, Hansen MF. A splicing mutation in RB1 in low penetrance retinoblastoma. Hum Genet. 1997;100(5–6):557–63.

    Article  CAS  Google Scholar 

  53. Soliman SE, Racher H, Lambourne M, Matevski D, MacDonald H, Gallie B. A novel deep intronic low penetrance RB1 variant in a retinoblastoma family. Ophthalmic Genet. 2018;39(2):288–90.

    Article  CAS  Google Scholar 

  54. Dehainault C, Garancher A, Castera L, Cassoux N, Aerts I, Doz F, et al. The survival gene MED4 explains low penetrance retinoblastoma in patients with large RB1 deletion. Hum Mol Genet. 2014;23(19):5243–50.

    Article  CAS  Google Scholar 

  55. Eloy P, Dehainault C, Sefta M, Aerts I, Doz F, Cassoux N, et al. A parent-of-origin effect impacts the phenotype in low penetrance retinoblastoma families segregating the c.1981C>T/p.Arg661Trp mutation of RB1. PLoS Genet. 2016;12(2):e1005888.

    Article  Google Scholar 

  56. Imperatore V, Pinto AM, Gelli E, Trevisson E, Morbidoni V, Frullanti E, et al. Parent-of-origin effect of hypomorphic pathogenic variants and somatic mosaicism impact on phenotypic expression of retinoblastoma. Eur J Hum Genet. 2018;26(7):1026–37.

    Article  CAS  Google Scholar 

  57. Carlson EA, Desnick RJ. Mutational mosaicism and genetic counseling in retinoblastoma. Am J Med Genet. 1979;4(4):365–81.

    Article  CAS  Google Scholar 

  58. Rushlow D, Piovesan B, Zhang K, Prigoda-Lee NL, Marchong MN, Clark RD, et al. Detection of mosaic RB1 mutations in families with retinoblastoma. Hum Mutat. 2009;30(5):842–51.

    Article  CAS  Google Scholar 

  59. Sippel KC, Fraioli RE, Smith GD, Schalkoff ME, Sutherland J, Gallie BL, et al. Frequency of somatic and germ-line mosaicism in retinoblastoma: implications for genetic counseling. Am J Hum Genet. 1998;62(3):610–9.

    Article  CAS  Google Scholar 

  60. Amitrano S, Marozza A, Somma S, Imperatore V, Hadjistilianou T, De Francesco S, et al. Next generation sequencing in sporadic retinoblastoma patients reveals somatic mosaicism. Eur J Hum Genet. 2015;23(11):1523–30.

    Article  CAS  Google Scholar 

  61. Chen Z, Moran K, Richards-Yutz J, Toorens E, Gerhart D, Ganguly T, et al. Enhanced sensitivity for detection of low-level germline mosaic RB1 mutations in sporadic retinoblastoma cases using deep semiconductor sequencing. Hum Mutat. 2014;35(3):384–91.

    Article  CAS  Google Scholar 

  62. Goodrich DW, Wang NP, Qian Y-W, Lee EY-HP, Lee W-H. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell. 1991;67:293–302.

    Article  CAS  Google Scholar 

  63. Chen PL, Scully P, Shew JY, Wang JY, Lee WH. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell. 1989;58(6):1193–8.

    Article  CAS  Google Scholar 

  64. Brown VD, Phillips RA, Gallie BL. Cumulative effect of phosphorylation of pRB on regulation of E2F activity. Mol Cell Biol. 1999;19(5):3246–56.

    Article  CAS  Google Scholar 

  65. Hamel PA, Gallie BL, Phillips RA. The retinoblastoma protein and cell cycle regulation. Trends Genet. 1992;8:180–5.

    Article  CAS  Google Scholar 

  66. Ludlow JW, Shon J, Pipas JM, Livingston DM, DeCaprio JA. The retinoblastoma susceptibility gene product undergoes cell cycle-dependent dephosphorylation and binding to and release from SV40 large T. Cell. 1990;60(3):387–96.

    Article  CAS  Google Scholar 

  67. Chellappan SP, Hiebert S, Mudryl M, Horowitz JM, Nevins JR. The E2F transcription factor is a cellular target for the RB protein. Cell. 1991;65:1053–61.

    Article  CAS  Google Scholar 

  68. Lees JA, Saito M, Vidal M, Valentine M, Look T, Harlow E, et al. The retinoblastoma protein binds to a family of E2F transcription factors. Mol Cell Biol. 1993;13(12):7813–25.

    CAS  Google Scholar 

  69. Helin K, Harlow E, Fattaey A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol Cell Biol. 1993;13(10):6501–8.

    CAS  Google Scholar 

  70. Polager S, Kalma Y, Berkovich E, Ginsberg D. E2Fs up-regulate expression of genes involved in DNA replication, DNA repair and mitosis. Oncogene. 2002;21(3):437–46.

    Article  CAS  Google Scholar 

  71. Markey MP, Angus SP, Strobeck MW, Williams SL, Gunawardena RW, Aronow BJ, et al. Unbiased analysis of RB-mediated transcriptional repression identifies novel targets and distinctions from E2F action. Cancer Res. 2002;62(22):6587–97.

    CAS  Google Scholar 

  72. Guarducci C, Bonechi M, Benelli M, Biagioni C, Boccalini G, Romagnoli D, et al. Cyclin E1 and Rb modulation as common events at time of resistance to palbociclib in hormone receptor-positive breast cancer. NPJ Breast Cancer. 2018;4:38.

    Article  Google Scholar 

  73. de Leeuw R, McNair C, Schiewer MJ, Neupane NP, Brand LJ, Augello MA, et al. MAPK reliance via acquired CDK4/6 inhibitor resistance in cancer. Clin Cancer Res. 2018;24(17):4201–14.

    Article  Google Scholar 

  74. Xu XL, Singh HP, Wang L, Qi DL, Poulos BK, Abramson DH, et al. Rb suppresses human cone-precursor-derived retinoblastoma tumours. Nature. 2014;514(7522):385–8.

    Article  CAS  Google Scholar 

  75. Gallie BL, Campbell C, Devlin H, Duckett A, Squire JA. Developmental basis of retinal-specific induction of cancer by RB mutation. Cancer Res. 1999;59(7 Suppl):1731s–5s.

    CAS  Google Scholar 

  76. Xu XL, Fang Y, Lee TC, Forrest D, Gregory-Evans C, Almeida D, et al. Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific MDM2 signaling. Cell. 2009;137(6):1018–31.

    Article  CAS  Google Scholar 

  77. Dimaras H, Khetan V, Halliday W, Orlic M, Prigoda NL, Piovesan B, et al. Loss of RB1 induces non-proliferative retinoma: increasing genomic instability correlates with progression to retinoblastoma. Hum Mol Genet. 2008;17(10):1363–72.

    Article  CAS  Google Scholar 

  78. Gallie BL, Ellsworth RM, Abramson DH, Phillips RA. Retinoma: spontaneous regression of retinoblastoma or benign manifestation of the mutation? Br J Cancer. 1982;45(4):513–21.

    Article  CAS  Google Scholar 

  79. Balmer A, Munier F, Gailloud C. Retinoma. Case studies. Ophthalmic Paediatr Gen. 1991;12(3):131–7.

    Article  CAS  Google Scholar 

  80. Eagle RC Jr, Shields JA, Donoso L, Milner RS. Malignant transformation of spontaneously regressed retinoblastoma, retinoma/retinocytoma variant. Ophthalmology. 1989;96(9):1389–95.

    Article  Google Scholar 

  81. Corson TW, Gallie BL. One hit, two hits, three hits, more? Genomic changes in the development of retinoblastoma. Genes Chromosomes Cancer. 2007;46(7):617–34.

    Article  CAS  Google Scholar 

  82. Theriault BL, Dimaras H, Gallie BL, Corson TW. The genomic landscape of retinoblastoma: a review. Clin Experiment Ophthalmol. 2014;42(1):33–52.

    Article  Google Scholar 

  83. Bowles E, Corson TW, Bayani J, Squire JA, Wong N, Lai PB, et al. Profiling genomic copy number changes in retinoblastoma beyond loss of RB1. Genes Chromosomes Cancer. 2007;46(2):118–29.

    Article  CAS  Google Scholar 

  84. Kooi IE, Mol BM, Massink MP, Ameziane N, Meijers-Heijboer H, Dommering CJ, et al. Somatic genomic alterations in retinoblastoma beyond RB1 are rare and limited to copy number changes. Sci Rep. 2016;6:25264.

    Article  CAS  Google Scholar 

  85. Squire J, Phillips RA, Boyce S, Godbout R, Rogers B, Gallie BL. Isochromosome 6p, a unique chromosomal abnormality in retinoblastoma: verification by standard staining techniques, new densitometric methods, and somatic cell hybridization. Hum Genet. 1984;66(1):46–53.

    Article  CAS  Google Scholar 

  86. Squire J, Gallie BL, Phillips RA. A detailed analysis of chromosomal changes in heritable and non-heritable retinoblastoma. Hum Genet. 1985;70(4):291–301.

    Article  CAS  Google Scholar 

  87. Mairal A, Pinglier E, Gilbert E, Peter M, Validire P, Desjardins L, et al. Detection of chromosome imbalances in retinoblastoma by parallel karyotype and CGH analyses. Genes Chromosomes Cancer. 2000;28(4):370–9.

    Article  CAS  Google Scholar 

  88. Chen D, Gallie BL, Squire JA. Minimal regions of chromosomal imbalance in retinoblastoma detected by comparative genomic hybridization. Cancer Genet Cytogenet. 2001;129(1):57–63.

    Article  CAS  Google Scholar 

  89. Herzog S, Lohmann DR, Buiting K, Schuler A, Horsthemke B, Rehder H, et al. Marked differences in unilateral isolated retinoblastomas from young and older children studied by comparative genomic hybridization. Hum Genet. 2001;108(2):98–104.

    Article  CAS  Google Scholar 

  90. Lillington DM, Kingston JE, Coen PG, Price E, Hungerford J, Domizio P, et al. Comparative genomic hybridization of 49 primary retinoblastoma tumors identifies chromosomal regions associated with histopathology, progression, and patient outcome. Genes Chromosomes Cancer. 2003;36(2):121–8.

    Article  CAS  Google Scholar 

  91. van der Wal JE, Hermsen MA, Gille HJ, Schouten-Van Meeteren NY, Moll AC, Imhof SM, et al. Comparative genomic hybridisation divides retinoblastomas into a high and a low level chromosomal instability group. J Clin Pathol. 2003;56(1):26–30.

    Article  Google Scholar 

  92. Potluri VR, Helson L, Ellsworth RM, Reid T, Gilbert F. Chromosomal abnormalities in human retinoblastoma. A review. Cancer. 1986;58(3):663–71.

    Article  CAS  Google Scholar 

  93. Kooi IE, Mol BM, Massink MP, de Jong MC, de Graaf P, van der Valk P, et al. A meta-analysis of retinoblastoma copy numbers refines the list of possible driver genes involved in tumor progression. PLoS One. 2016;11(4):e0153323.

    Article  Google Scholar 

  94. Corson TW, Huang A, Tsao MS, Gallie BL. KIF14 is a candidate oncogene in the 1q minimal region of genomic gain in multiple cancers. Oncogene. 2005;24(30):4741–53.

    Article  CAS  Google Scholar 

  95. Gratias S, Schuler A, Hitpass LK, Stephan H, Rieder H, Schneider S, et al. Genomic gains on chromosome 1q in retinoblastoma: consequences on gene expression and association with clinical manifestation. Int J Cancer. 2005;116(4):555–63.

    Article  CAS  Google Scholar 

  96. Lee WH, Murphree AL, Benedict WF. Expression and amplification of the N-myc gene in primary retinoblastoma. Nature. 1984;309(5967):458–60.

    Article  CAS  Google Scholar 

  97. Orlic M, Spencer CE, Wang L, Gallie BL. Expression analysis of 6p22 genomic gain in retinoblastoma. Genes Chromosomes Cancer. 2006;45(1):72–82.

    Article  CAS  Google Scholar 

  98. Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X, et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature. 2012;481(7381):329–34.

    Article  CAS  Google Scholar 

  99. Marchong MN, Chen D, Corson TW, Lee C, Harmandayan M, Bowles E, et al. Minimal 16q genomic loss implicates cadherin-11 in retinoblastoma. Mol Cancer Res. 2004;2(9):495–503.

    Article  CAS  Google Scholar 

  100. Kato MV, Shimizu T, Ishizaki K, Kaneko A, Yandell DW, Toguchida J, et al. Loss of heterozygosity on chromosome 17 and mutation of the p53 gene in retinoblastoma. Cancer Lett. 1996;106(1):75–82.

    Article  CAS  Google Scholar 

  101. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992;358:80–3.

    Article  CAS  Google Scholar 

  102. Medina-Medina I, Martinez-Sanchez M, Hernandez-Monge J, Fahraeus R, Muller P, Olivares-Illana V. p53 promotes its own polyubiquitination by enhancing the HDM2 and HDMX interaction. Protein Sci. 2018;27(5):976–86.

    Article  CAS  Google Scholar 

  103. McEvoy J, Ulyanov A, Brennan R, Wu G, Pounds S, Zhang J, et al. Analysis of MDM2 and MDM4 single nucleotide polymorphisms, mRNA splicing and protein expression in retinoblastoma. PLoS One. 2012;7(8):e42739.

    Article  CAS  Google Scholar 

  104. Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell. 2004;119(5):591–602.

    Article  CAS  Google Scholar 

  105. Castera L, Sabbagh A, Dehainault C, Michaux D, Mansuet-Lupo A, Patillon B, et al. MDM2 as a modifier gene in retinoblastoma. J Natl Cancer Inst. 2010;102(23):1805–8.

    Article  CAS  Google Scholar 

  106. de Oliveira Reis AH, de Carvalho IN, de Sousa Damasceno PB, Ferman SE, Lucena E, Lopez-Camelo JS, et al. Influence of MDM2 and MDM4 on development and survival in hereditary retinoblastoma. Pediatr Blood Cancer. 2012;59(1):39–43.

    Article  Google Scholar 

  107. Pritchard EM, Dyer MA, Guy RK. Progress in small molecule therapeutics for the treatment of retinoblastoma. Mini Rev Med Chem. 2016;16(6):430–54.

    Article  CAS  Google Scholar 

  108. Mallipatna A, Gallie BL, Chévez-Barrios P, Lumbroso-Le Rouic L, Chantada GL, Doz F, et al. Retinoblastoma. In: Amin MB, Edge SB, Greene FL, editors. AJCC cancer staging manual. 8th ed. New York, NY: Springer; 2017. p. 819–31.

    Google Scholar 

  109. Soliman SE, Racher H, Zhang C, MacDonald H, Gallie BL. Genetics and molecular diagnostics in retinoblastoma—an update. Asia Pac J Ophthalmol (Phila). 2017;6(2):197–207.

    CAS  Google Scholar 

  110. de Jong MC, Kors WA, de Graaf P, Castelijns JA, Kivela T, Moll AC. Trilateral retinoblastoma: a systematic review and meta-analysis. Lancet Oncol. 2014;15(10):1157–67.

    Article  Google Scholar 

  111. Canadian Retinoblastoma Society. National Retinoblastoma Strategy Canadian Guidelines for Care: Stratégie thérapeutique du rétinoblastome guide clinique canadien. Can J Ophthalmol. 2009;44(Supp 2):S1–88.

    Google Scholar 

  112. Noorani HZ, Khan HN, Gallie BL, Detsky AS. Cost comparison of molecular versus conventional screening of relatives at risk for retinoblastoma. Am J Hum Genet. 1996;59(2):301–7.

    CAS  Google Scholar 

  113. Skalet AH, Gombos DS, Gallie BL, Kim JW, Shields CL, Marr BP, et al. Screening children at risk for retinoblastoma: consensus report from the American association of ophthalmic oncologists and pathologists. Ophthalmology. 2018;125(3):453–8.

    Article  Google Scholar 

  114. Yousef YA, Alkhoms A, AlJabari R, AlJboor M, Mohammad M, Lahlouh M, et al. Programmed screening for retinoblastoma enhances early diagnosis and improves management outcome for high-risk children. Ophthalmic Genet. 2020;41(4):308–14.

    Article  Google Scholar 

  115. Soliman SE, ElManhaly M, Dimaras H. Knowledge of genetics in familial retinoblastoma. Ophthalmic Genet. 2017;38(3):226–32.

    Article  CAS  Google Scholar 

  116. Rothschild PR, Levy D, Savignoni A, Lumbroso-Le Rouic L, Aerts I, Gauthier-Villars M, et al. Familial retinoblastoma: fundus screening schedule impact and guideline proposal. A retrospective study. Eye (Lond). 2011;25(12):1555–61.

    Article  Google Scholar 

  117. Maat-Kievit JA, Oepkes D, Hartwig NG, Vermeij-Keers C, van Kamp IL, van de Kamp JJ. A large retinoblastoma detected in a fetus at 21 weeks of gestation. Prenat Diagn. 1993;13(5):377–84.

    Article  CAS  Google Scholar 

  118. Paquette LB, Miller D, Jackson HA, Lee T, Randolph L, Murphree AL, et al. In utero detection of retinoblastoma with fetal magnetic resonance and ultrasound: initial experience. AJP Rep. 2012;2(1):55–62.

    Article  Google Scholar 

  119. Abramson DH, Gombos DS. The topography of bilateral retinoblastoma lesions. Retina. 1996;16(3):232–9.

    Article  CAS  Google Scholar 

  120. Abramson DH, Mendelsohn ME, Servodidio CA, Tretter T, Gombos DS. Familial retinoblastoma: where and when? Acta Ophthalmol Scand. 1998;76(3):334–8.

    Article  CAS  Google Scholar 

  121. Brinkert AW, Moll AC, Jager MJ, Den Otter W, Koten JW, Faber JA, et al. Distribution of tumors in the retina in hereditary retinoblastoma patients. Ophthalmic Genet. 1998;19(2):63–7.

    Article  CAS  Google Scholar 

  122. King BA, Parra C, Li Y, Helton KJ, Qaddoumi I, Wilson MW, et al. Spatiotemporal patterns of tumor occurrence in children with intraocular retinoblastoma. PLoS One. 2015;10(7):e0132932.

    Article  Google Scholar 

  123. Shah PK, Narendran V, Kalpana N. In vivo growth of retinoblastoma in a newborn infant. Indian J Ophthalmol. 2010;58(5):421–3.

    Article  Google Scholar 

  124. Abramson DH, Schefler AC, Beaverson KL, Rollins IS, Ruddat MS, Kelly CJ. Rapid growth of retinoblastoma in a premature twin. Arch Ophthalmol. 2002;120(9):1232–3.

    Article  Google Scholar 

  125. Manjandavida FP, Xia J, Zhang J, Tang XY, Yi HR. In-utero ultrasonography detection of fetal retinoblastoma and neonatal selective ophthalmic artery chemotherapy. Indian J Ophthalmol. 2019;67(6):958–60.

    Article  Google Scholar 

  126. Akolekar R, Beta J, Picciarelli G, Ogilvie C, D’Antonio F. Procedure-related risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2015;45(1):16–26.

    Article  CAS  Google Scholar 

  127. Soliman SE, VandenHoven C, MacKeen LD, Heon E, Gallie BL. Optical coherence tomography-guided decisions in retinoblastoma management. Ophthalmology. 2017;124(6):859–72.

    Article  Google Scholar 

  128. Saktanasate J, Vongkulsiri S, Khoo CT. Invisible retinoblastoma. JAMA Ophthalmol. 2015;133(7):e151123.

    Article  Google Scholar 

  129. Berry JL, Cobrinik D, Kim JW. Detection and intraretinal localization of an ‘invisible’ retinoblastoma using optical coherence tomography. Ocul Oncol Pathol. 2016;2(3):148–52.

    Article  Google Scholar 

  130. Soliman SE, VandenHoven C, MacKeen LD, Gallie BL. Secondary prevention of retinoblastoma revisited: laser photocoagulation of invisible new retinoblastoma. Ophthalmology. 2020;127(1):122–7.

    Article  Google Scholar 

  131. Gaillard MC, Houghton S, Stathopoulos C, Munier FL. OCT-guided management of subclinical recurrent retinoblastoma. Ophthalmic Genet. 2018;39(3):338–43.

    Article  Google Scholar 

  132. Dommering CJ, van den Heuvel MR, Moll AC, Imhof SM, Meijers-Heijboer H, Henneman L. Reproductive decision-making: a qualitative study among couples at increased risk of having a child with retinoblastoma. Clin Genet. 2010;78(4):334–41.

    Article  CAS  Google Scholar 

  133. Foster A, Boyes L, Burgess L, Carless S, Bowyer V, Jenkinson H, et al. Patient understanding of genetic information influences reproductive decision making in retinoblastoma. Clin Genet. 2017;92(6):587–93.

    Article  CAS  Google Scholar 

  134. Yahalom C, Macarov M, Lazer-Derbeko G, Altarescu G, Imbar T, Hyman JH, et al. Preimplantation genetic diagnosis as a strategy to prevent having a child born with an heritable eye disease. Ophthalmic Genet. 2018;39(4):450–6.

    Article  Google Scholar 

  135. Dhanjal S, Kakourou G, Mamas T, Saleh N, Doshi A, Gotts S, et al. Preimplantation genetic diagnosis for retinoblastoma predisposition. Br J Ophthalmol. 2007;91(8):1090–1.

    Article  Google Scholar 

  136. Berry JL, Xu L, Murphree AL, Krishnan S, Stachelek K, Zolfaghari E, et al. Potential of aqueous humor as a surrogate tumor biopsy for retinoblastoma. JAMA Ophthalmol. 2017;135(11):1221–30.

    Article  Google Scholar 

  137. Gerrish A, Stone E, Clokie S, Ainsworth JR, Jenkinson H, McCalla M, et al. Non-invasive diagnosis of retinoblastoma using cell-free DNA from aqueous humour. Br J Ophthalmol. 2019;103(5):721–4.

    Article  Google Scholar 

  138. Xu L, Shen L, Polski A, Prabakar RK, Shah R, Jubran R, et al. Simultaneous identification of clinically relevant RB1 mutations and copy number alterations in aqueous humor of retinoblastoma eyes. Ophthalmic Genet. 2020;41(6):526–32.

    Article  CAS  Google Scholar 

  139. Zeschnigk M, Lohmann D, Horsthemke B. A PCR test for the detection of hypermethylated alleles at the retinoblastoma locus. J Med Genet. 1999;36(10):793–4.

    Article  CAS  Google Scholar 

  140. Dimaras H, Corson TW, Cobrinik D, White A, Zhao J, Munier FL, et al. Retinoblastoma. Nat Rev Dis Primers. 2015;1:15021.

    Article  Google Scholar 

  141. Group GRS. Global retinoblastoma presentation and analysis by national income level. JAMA Oncol. 2020;6(5):685–95.

    Article  Google Scholar 

  142. Tomar AS, Finger PT, Gallie B, Kivela TT, Mallipatna A, Zhang C, et al. Global retinoblastoma treatment outcomes: association with national income level. Ophthalmology. 2021;128(5):740–53.

    Article  Google Scholar 

  143. Hill JA, Kimani K, White A, Barasa F, Livingstone M, Gallie BL, et al. Achieving optimal cancer outcomes in East Africa through multidisciplinary partnership: a case study of the Kenyan National Retinoblastoma Strategy group. Global Health. 2016;12(1):23.

    Article  Google Scholar 

  144. Health KMo. Kenya national retinoblastoma strategy: Best Practice guidelines; 2014.

    Google Scholar 

  145. He LQ, Njambi L, Nyamori JM, Nyenze EM, Kimani K, Matende I, et al. Developing clinical cancer genetics services in resource-limited countries: the case of retinoblastoma in Kenya. Public Health Genomics. 2014;17(4):221–7.

    Article  Google Scholar 

  146. Zhong A, Darren B, Loiseau B, He LQB, Chang T, Hill J, et al. Ethical, social, and cultural issues related to clinical genetic testing and counseling in low- and middle-income countries: a systematic review. Genet Med. 2018.

    Google Scholar 

  147. Gedleh A, Lee S, Hill JA, Umukunda Y, Qaiser S, Kabiru J, et al. “Where does it come from?” Experiences among survivors and parents of children with retinoblastoma in Kenya. J Genet Couns. 2018;27(3):574–88.

    Article  Google Scholar 

  148. Hill J, Lee M, Njambi L, Corson T, Dimaras H. Cancer genetics education in a low- to middle-income country: evaluation of an interactive workshop for clinicians in Kenya. Ann Glob Health. 2015;81(1):152–3.

    Article  Google Scholar 

  149. Laurent VE, Sampor C, Solernou V, Rossi J, Gabri M, Eandi-Eberle S, et al. Detection of minimally disseminated disease in the cerebrospinal fluid of children with high-risk retinoblastoma by reverse transcriptase-polymerase chain reaction for GD2 synthase mRNA. Eur J Cancer. 2013;49(13):2892–9.

    Article  CAS  Google Scholar 

  150. Torbidoni AV, Laurent VE, Sampor C, Ottaviani D, Vazquez V, Gabri MR, et al. Association of cone-rod homeobox transcription factor messenger RNA with pediatric metastatic retinoblastoma. JAMA Ophthalmol. 2015;133(7):805–12.

    Article  Google Scholar 

  151. Meredith DM, Charville GW, Fletcher CDM, Hornick JL. Distantly metastatic retinoblastoma to soft tissue and bone: a challenging diagnosis highlighting the utility of CRX. Am J Surg Pathol. 2021;45(6):820–4.

    Article  Google Scholar 

  152. Laurent VE, Torbidoni AV, Sampor C, Ottaviani D, Vazquez V, Gabri MR, et al. Minimal disseminated disease in nonmetastatic retinoblastoma with high-risk pathologic features and association with disease-free survival. JAMA Ophthalmol. 2016;134(12):1374–9.

    Article  Google Scholar 

  153. Dimaras H, Rushlow D, Halliday W, Doyle JJ, Babyn P, Abella EM, et al. Using RB1 mutations to assess minimal residual disease in metastatic retinoblastoma. Transl Res. 2010;156(2):91–7.

    Article  CAS  Google Scholar 

  154. Racher H, Soliman S, Argiropoulos B, Chan HS, Gallie BL, Perrier R, et al. Molecular analysis distinguishes metastatic disease from second cancers in patients with retinoblastoma. Cancer Genet. 2016;209(7–8):359–63.

    Article  CAS  Google Scholar 

  155. Andersson D, Fagman H, Dalin MG, Stahlberg A. Circulating cell-free tumor DNA analysis in pediatric cancers. Mol Aspects Med. 2020;72:100819.

    Article  CAS  Google Scholar 

  156. Stewart CM, Tsui DWY. Circulating cell-free DNA for non-invasive cancer management. Cancer Genet. 2018;228–229:169–79.

    Article  Google Scholar 

  157. Mandel P, Metais P. Nuclear acids in human blood plasma. C R Seances Soc Biol Fil. 1948;142(3–4):241–3.

    CAS  Google Scholar 

  158. Bronkhorst AJ, Ungerer V, Diehl F, Anker P, Dor Y, Fleischhacker M, et al. Towards systematic nomenclature for cell-free DNA. Hum Genet. 2021;140(4):565–78.

    Article  CAS  Google Scholar 

  159. Ghiam BK, Xu L, Berry JL. Aqueous humor markers in retinoblastoma, a review. Transl Vis Sci Technol. 2019;8(2):13.

    Article  Google Scholar 

  160. Munier FL, Gaillard MC, Balmer A, Soliman S, Podilsky G, Moulin AP, et al. Intravitreal chemotherapy for vitreous disease in retinoblastoma revisited: from prohibition to conditional indications. Br J Ophthalmol. 2012;96(8):1078–83.

    Article  Google Scholar 

  161. Munier FL, Soliman S, Moulin AP, Gaillard MC, Balmer A, Beck-Popovic M. Profiling safety of intravitreal injections for retinoblastoma using an anti-reflux procedure and sterilisation of the needle track. Br J Ophthalmol. 2012;96(8):1084–7.

    Article  Google Scholar 

  162. Francis JH, Abramson DH, Ji X, Shields CL, Teixeira LF, Schefler AC, et al. Risk of extraocular extension in eyes with retinoblastoma receiving intravitreous chemotherapy. JAMA Ophthalmol. 2017;135(12):1426–9.

    Article  Google Scholar 

  163. Berry JL, Xu L, Kooi I, Murphree AL, Prabakar RK, Reid M, et al. Genomic cfDNA analysis of aqueous humor in retinoblastoma predicts eye salvage: the surrogate tumor biopsy for retinoblastoma. Mol Cancer Res. 2018;16(11):1701–12.

    Article  CAS  Google Scholar 

  164. Xu L, Polski A, Prabakar RK, Reid MW, Chevez-Barrios P, Jubran R, et al. Chromosome 6p amplification in aqueous humor cell-free DNA is a prognostic biomarker for retinoblastoma ocular survival. Mol Cancer Res. 2020;18(8):1166–75.

    Article  CAS  Google Scholar 

  165. Polski A, Xu L, Prabakar RK, Kim JW, Shah R, Jubran R, et al. Cell-free DNA tumor fraction in the aqueous humor is associated with therapeutic response in retinoblastoma patients. Transl Vis Sci Technol. 2020;9(10):30.

    Article  Google Scholar 

  166. Berry JL, Xu L, Polski A, Jubran R, Kuhn P, Kim JW, et al. Aqueous humor is superior to blood as a liquid biopsy for retinoblastoma. Ophthalmology. 2019;127(4):552–4.

    Article  Google Scholar 

  167. Kothari P, Marass F, Yang JL, Stewart CM, Stephens D, Patel J, et al. Cell-free DNA profiling in retinoblastoma patients with advanced intraocular disease: An MSKCC experience. Cancer Med. 2020;9(17):6093–101.

    Article  CAS  Google Scholar 

  168. Berry JL, Cobrinik D, Hicks J. Potential of aqueous humor as a surrogate tumor biopsy for retinoblastoma-reply. JAMA Ophthalmol. 2018;136(5):598.

    Article  Google Scholar 

  169. Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485–7.

    Article  CAS  Google Scholar 

  170. Lo YM, Tein MS, Lau TK, Haines CJ, Leung TN, Poon PM, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet. 1998;62(4):768–75.

    Article  CAS  Google Scholar 

  171. Saito H, Sekizawa A, Morimoto T, Suzuki M, Yanaihara T. Prenatal DNA diagnosis of a single-gene disorder from maternal plasma. Lancet. 2000;356(9236):1170.

    Article  CAS  Google Scholar 

  172. Lo YM, Chan KC, Sun H, Chen EZ, Jiang P, Lun FM, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med. 2010;2(61):61ra91.

    Article  CAS  Google Scholar 

  173. Young E, Bowns B, Gerrish A, Parks M, Court S, Clokie S, et al. Clinical service delivery of noninvasive prenatal diagnosis by relative haplotype dosage for single-gene disorders. J Mol Diagn. 2020;22(9):1151–61.

    Article  CAS  Google Scholar 

  174. Gerrish A, Bowns B, Mashayamombe-Wolfgarten C, Young E, Court S, Bott J, et al. Non-invasive prenatal diagnosis of retinoblastoma inheritance by combined targeted sequencing strategies. J Clin Med. 2020;9(11):3517.

    Article  CAS  Google Scholar 

  175. Brennan RC, Federico S, Bradley C, Zhang J, Flores-Otero J, Wilson M, et al. Targeting the p53 pathway in retinoblastoma with subconjunctival nutlin-3a. Cancer Res. 2011;71(12):4205–13.

    Article  CAS  Google Scholar 

  176. Grace CR, Ban D, Min J, Mayasundari A, Min L, Finch KE, et al. Monitoring ligand-induced protein ordering in drug discovery. J Mol Biol. 2016;428(6):1290–303.

    Article  CAS  Google Scholar 

  177. Togashi K, Okada M, Suzuki S, Sanomachi T, Seino S, Yamamoto M, et al. Inhibition of retinoblastoma cell growth by CEP1347 through activation of the P53 pathway. Anticancer Res. 2020;40(9):4961–8.

    Article  CAS  Google Scholar 

  178. Pontes de Carvalho RA, Krausse ML, Murphree AL, Schmitt EE, Campochiaro PA, Maumenee IH. Delivery from episcleral exoplants. Invest Ophthalmol Vis Sci. 2006;47(10):4532–9.

    Article  Google Scholar 

  179. Phase I. Sustained-Release Topotecan Episcleral Plaque (Chemoplaque) for Retinoblastoma [Internet]; 2020. https://clinicaltrials.gov/ct2/show/NCT04428879.

  180. Brodeur GM, Nichols KE, Plon SE, Schiffman JD, Malkin D. Pediatric cancer predisposition and surveillance: an overview, and a tribute to Alfred G. Knudson Jr. Clin Cancer Res. 2017;23(11):e1–5.

    Article  Google Scholar 

  181. Kamihara J, Bourdeaut F, Foulkes WD, Molenaar JJ, Mosse YP, Nakagawara A, et al. Retinoblastoma and neuroblastoma predisposition and surveillance. Clin Cancer Res. 2017;23(13):e98–e106.

    Article  CAS  Google Scholar 

  182. Friedman DN, Lis E, Sklar CA, Oeffinger KC, Reppucci M, Fleischut MH, et al. Whole-body magnetic resonance imaging (WB-MRI) as surveillance for subsequent malignancies in survivors of hereditary retinoblastoma: a pilot study. Pediatr Blood Cancer. 2014;61(8):1440–4.

    Article  Google Scholar 

  183. Friedman DN, Hsu M, Moskowitz CS, Francis JH, Lis E, Fleischut MH, et al. Whole-body magnetic resonance imaging as surveillance for subsequent malignancies in preadolescent, adolescent, and young adult survivors of germline retinoblastoma: an update. Pediatr Blood Cancer. 2020;67(7):e28389.

    Article  Google Scholar 

  184. Tonorezos ES, Friedman DN, Barnea D, Bosscha MI, Chantada G, Dommering CJ, et al. Recommendations for long-term follow-up of adults with heritable retinoblastoma. Ophthalmology. 2020;127(11):1549–57.

    Article  Google Scholar 

  185. Flegg K, Gelkopf MJ, Johnson SA, Dimaras H. Canadian retinoblastoma research advisory board priority setting steering C. The top 10 retinoblastoma research priorities in Canada as determined by patients, clinicians and researchers: a patient-oriented priority-setting partnership. CMAJ Open. 2020;8(2):E420–E8.

    Article  Google Scholar 

  186. Onken MD, Worley LA, Long MD, Duan S, Council ML, Bowcock AM, et al. Oncogenic mutations in GNAQ occur early in uveal melanoma. Invest Ophthalmol Vis Sci. 2008;49(12):5230–4.

    Article  Google Scholar 

  187. Eskelin S, Pyrhonen S, Summanen P, Hahka-Kemppinen M, Kivela T. Tumor doubling times in metastatic malignant melanoma of the uvea: tumor progression before and after treatment. Ophthalmology. 2000;107(8):1443–9.

    Article  CAS  Google Scholar 

  188. Collaborative Ocular Melanoma Study G. Assessment of metastatic disease status at death in 435 patients with large choroidal melanoma in the Collaborative Ocular Melanoma Study (COMS): COMS report no. 15. Arch Ophthalmol. 2001;119(5):670–6.

    Article  Google Scholar 

  189. Diener-West M, Reynolds SM, Agugliaro DJ, Caldwell R, Cumming K, Earle JD, et al. Development of metastatic disease after enrollment in the COMS trials for treatment of choroidal melanoma: Collaborative Ocular Melanoma Study Group Report No. 26. Arch Ophthalmol. 2005;123(12):1639–43.

    Article  Google Scholar 

  190. Prescher G, Bornfeld N, Hirche H, Horsthemke B, Jockel KH, Becher R. Prognostic implications of monosomy 3 in uveal melanoma. Lancet. 1996;347(9010):1222–5.

    Article  CAS  Google Scholar 

  191. Sisley K, Rennie IG, Parsons MA, Jacques R, Hammond DW, Bell SM, et al. Abnormalities of chromosomes 3 and 8 in posterior uveal melanoma correlate with prognosis. Genes Chromosomes Cancer. 1997;19(1):22–8.

    Article  CAS  Google Scholar 

  192. White VA, Chambers JD, Courtright PD, Chang WY, Horsman DE. Correlation of cytogenetic abnormalities with the outcome of patients with uveal melanoma. Cancer. 1998;83(2):354–9.

    Article  CAS  Google Scholar 

  193. Harbour JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330(6009):1410–3.

    Article  CAS  Google Scholar 

  194. Onken MD, Worley LA, Davila RM, Char DH, Harbour JW. Prognostic testing in uveal melanoma by transcriptomic profiling of fine needle biopsy specimens. J Mol Diagn. 2006;8(5):567–73.

    Article  CAS  Google Scholar 

  195. Onken MD, Worley LA, Ehlers JP, Harbour JW. Gene expression profiling in uveal melanoma reveals two molecular classes and predicts metastatic death. Cancer Res. 2004;64(20):7205–9.

    Article  CAS  Google Scholar 

  196. Tschentscher F, Husing J, Holter T, Kruse E, Dresen IG, Jockel KH, et al. Tumor classification based on gene expression profiling shows that uveal melanomas with and without monosomy 3 represent two distinct entities. Cancer Res. 2003;63(10):2578–84.

    CAS  Google Scholar 

  197. Worley LA, Onken MD, Person E, Robirds D, Branson J, Char DH, et al. Transcriptomic versus chromosomal prognostic markers and clinical outcome in uveal melanoma. Clin Cancer Res. 2007;13(5):1466–71.

    Article  CAS  Google Scholar 

  198. Onken MD, Worley LA, Char DH, Augsburger JJ, Correa ZM, Nudleman E, et al. Collaborative Ocular Oncology Group report number 1: prospective validation of a multi-gene prognostic assay in uveal melanoma. Ophthalmology. 2012;119(8):1596–603.

    Article  Google Scholar 

  199. Field MG, Decatur CL, Kurtenbach S, Gezgin G, van der Velden PA, Jager MJ, et al. PRAME as an independent biomarker for metastasis in uveal melanoma. Clin Cancer Res. 2016;22(5):1234–42.

    Article  CAS  Google Scholar 

  200. Cai L, Paez-Escamilla M, Walter SD, Tarlan B, Decatur CL, Perez BM, et al. Gene expression profiling and PRAME status versus tumor-node-metastasis staging for prognostication in uveal melanoma. Am J Ophthalmol. 2018;195:154–60.

    Article  CAS  Google Scholar 

  201. Robertson AG, Shih J, Yau C, Gibb EA, Oba J, Mungall KL, et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell. 2017;32(2):204–20 e15.

    Article  CAS  Google Scholar 

  202. Jager MJ, Brouwer NJ, Esmaeli B. The cancer genome atlas project: an integrated molecular view of uveal melanoma. Ophthalmology. 2018;125(8):1139–42.

    Article  Google Scholar 

  203. Mazloumi M, Vichitvejpaisal P, Dalvin LA, Yaghy A, Ewens KG, Ganguly A, et al. Accuracy of the cancer genome atlas classification vs american joint committee on cancer classification for prediction of metastasis in patients with uveal melanoma. JAMA Ophthalmol. 2020;138(3):260–7.

    Article  Google Scholar 

  204. Damato B, Dopierala J, Klaasen A, van Dijk M, Sibbring J, Coupland SE. Multiplex ligation-dependent probe amplification of uveal melanoma: correlation with metastatic death. Invest Ophthalmol Vis Sci. 2009;50(7):3048–55.

    Article  Google Scholar 

  205. Damato B, Dopierala JA, Coupland SE. Genotypic profiling of 452 choroidal melanomas with multiplex ligation-dependent probe amplification. Clin Cancer Res. 2010;16(24):6083–92.

    Article  CAS  Google Scholar 

  206. Kujala E, Damato B, Coupland SE, Desjardins L, Bechrakis NE, Grange JD, et al. Staging of ciliary body and choroidal melanomas based on anatomic extent. J Clin Oncol. 2013;31(22):2825–31.

    Article  Google Scholar 

  207. Damato B, Eleuteri A, Taktak AF, Coupland SE. Estimating prognosis for survival after treatment of choroidal melanoma. Prog Retin Eye Res. 2011;30(5):285–95.

    Article  Google Scholar 

  208. Cunha Rola A, Taktak A, Eleuteri A, Kalirai H, Heimann H, Hussain R, et al. Multicenter external validation of the Liverpool uveal melanoma prognosticator online: an OOG collaborative study. Cancers (Basel). 2020;12(2):477.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie N. Kletke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kletke, S.N., Gallie, B.L. (2022). Genomics: Past, Present, and Future. In: Chawla, B.V., Aronow, M.E. (eds) Global Perspectives in Ocular Oncology. Springer, Cham. https://doi.org/10.1007/978-3-031-08250-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08250-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08249-8

  • Online ISBN: 978-3-031-08250-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics