Skip to main content

Integrated Hybrid Glass-Plastic Chip for Sorting and Counting of Microparticles in Biomedical Applications

  • Conference paper
  • First Online:
Sensors and Microsystems (AISEM 2021)

Abstract

We present the development of a compact, easy-to-use device that implements a 3D microfluidic network with sensing sites, based on impedance spectroscopy techniques. The aim is to provide a Lab-on-Chip approach in applications where classification of microparticles is required, as well as morphological and volume studies. A complex colloidal mixture made of cell-resembling agarose microbeads suspended in aqueous medium was arranged to carry out microfluidic and impedance spectroscopy tests on the device. Preliminary impedance measurements show the effectiveness of the counting sub-system, displaying a good sensitivity in detecting the passing of a single bead over a sensing site. These results confirm the effectiveness of the system, and encourage further developments toward an implementation in actual biomedical scenarios. Possible applications can be found in 3D cell-cultures monitoring, blood analysis and diagnosis and blood-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gabriel, C., Gabriel, S., Corthout, Y.E.: The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41(11), 2231 (1996)

    Google Scholar 

  2. Xu, Y., Xie, X., Duan, Y., Wang, L., Cheng, Z., Cheng, J.: A review of impedance measurements of whole cells. Biosens. Bioelectron. 77, 824–836 (2016)

    Article  Google Scholar 

  3. Veroli, A., et al.: High circular dichroism and robust performance in planar plasmonic metamaterial made of nano-comma-shaped resonators. JOSA B 36(11), 3079–3084 (2019)

    Article  Google Scholar 

  4. Grosse, C., Tirado, M.C.: Low-frequency dielectric spectroscopy of colloidal suspensions. J. Non-Cryst. Solids 305(1–3), 386–392 (2002)

    Article  Google Scholar 

  5. Song, H., et al.: A microfluidic impedance flow cytometer for identification of differentiation state of stem cells. Lab Chip 13(12), 2300–2310 (2013)

    Article  Google Scholar 

  6. Diez-Silva, M., Dao, M., Han, J., Lim, C.T., Suresh, S.: Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull. 35(5), 382–388 (2010)

    Google Scholar 

  7. Canali, C., Heiskanen, A., Muhammad, P., Pettersen, F.J., Hemmingsen, M., Emnéus, J.: Bioimpedance monitoring of 3D cell culturing - complementary electrode configurations for enhanced spatial sensitivity. Biosens. Bioelectron. 63, 72–79 (2015)

    Article  Google Scholar 

  8. Buzzin, A., Asquini, R., Caputo, D., de Cesare, G.: On-glass integrated SU-8 waveguide and amorphous silicon photosensor for on-chip detection of biomolecules: feasibility study on hemoglobin sensing. Sensors 21(2), 415 (2021)

    Article  Google Scholar 

  9. Costantini, F., et al.: Lab-on-chip system combining a microfluidic-ELISA with an array of amorphous silicon photosensors for the detection of celiac disease epitopes. Sens. Bio-Sens. Res. 6, 51–58 (2015)

    Article  Google Scholar 

  10. Buzzin, A., Veroli, A., Alam, B., Maiolo, L., Marrani, M., Muzi, M.: Polymer nano-sieve for particle filtering in lab-on-chip devices. In: AIP Conference Proceedings, vol. 2145, no. 1, p. 020013. AIP Publishing LLC (2019)

    Google Scholar 

  11. Piedimonte, P., et al.: Silicon nanowires to detect electric signals from living cells. Mater. Res. Exp. 6(8), 084005 (2019)

    Google Scholar 

  12. Buzzin, A., Cupo, S., Giovine, E., de Cesare, G., Belfiore, N.P.: Compliant nano-pliers as a biomedical tool at the nanoscale: design simulation and fabrication. Micromachines 11(12), 1087 (2020)

    Article  Google Scholar 

  13. Pal, N., Sharma, S., Gupta, S.: Sensitive and rapid detection of pathogenic bacteria in small volumes using impedance spectroscopy technique. Biosens. Bioelectron. 77, 270–276 (2016)

    Article  Google Scholar 

  14. Iannascoli, L., et al.: Micro-incubator based on lab-on-glass technology for nanosatellite missions. In: Di Francia, G., et al. (eds.) AISEM 2019. LNEE, vol. 629, pp. 83–89. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37558-4_13

    Chapter  Google Scholar 

  15. Stallcop, L.E., et al.: Razor-printed sticker microdevices for cell-based applications. Lab Chip 18(3), 451–462 (2018)

    Article  Google Scholar 

  16. Pecora, A., et al.: Low-temperature polysilicon thin film transistors on polyimide substrates for electronics on plastic. Solid-State Electron. 52(3), 348–352 (2008)

    Article  Google Scholar 

  17. Buzzin, A., et al.: Integrated 3D microfluidic device for impedance spectroscopy in lab-on-chip systems. In: International Workshop on Advances in Sensors and Interfaces, pp. 224–227. IEEE (2019)

    Google Scholar 

  18. Vurchio, F., et al.: Grasping and releasing agarose micro beads in water drops. Micromachines 10(7), 436 (2019)

    Article  Google Scholar 

  19. Du, N., Chou, J., Kulla, E., Floriano, P.N., Christodoulides, N., McDevitt, J.T.: A disposable bio-nano-chip using agarose beads for high performance immunoassays. Biosens. Bioelectron. 28(1), 251–256 (2011)

    Article  Google Scholar 

  20. Nweke, M.C., McCartney, R.G., Bracewell, D.G.: Mechanical characterisation of agarose-based chromatography resins for biopharmaceutical manufacture. J. Chromatogr. A 1530, 129–137 (2017)

    Article  Google Scholar 

  21. Carminati, M.: Advances in high-resolution microscale impedance sensors. J. Sens. 2017, 1–15 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Buzzin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buzzin, A. et al. (2023). Integrated Hybrid Glass-Plastic Chip for Sorting and Counting of Microparticles in Biomedical Applications. In: Di Francia, G., Di Natale, C. (eds) Sensors and Microsystems. AISEM 2021. Lecture Notes in Electrical Engineering, vol 918. Springer, Cham. https://doi.org/10.1007/978-3-031-08136-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08136-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08135-4

  • Online ISBN: 978-3-031-08136-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics