Skip to main content

New Research Directions for Green Mobile Cloud Computing

  • Chapter
  • First Online:
Green Mobile Cloud Computing

Abstract

This chapter discusses future research issues, challenges, and directions in mobile cloud computing. It covers various research elements and issues such as energy harvesting, entropy-based GMCC, green vehicular MCC, green mobile crowd sensing, green edge and fog computing, GMCC-based smart applications, geographical location aware mobile recommender system, nature inspired optimization algorithms for GMCC, big data management, intelligent system design for fifth generation (5G) HetNet and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hossain, M.S., Jahid, A., Ziaul Islam, K., Rahman, M.F.: Solar PV and biomass resources-based sustainable energy supply for off-grid cellular base stations. IEEE Access. 8, 53817–53840 (2020)

    Article  Google Scholar 

  2. Mukherjee, A., Debashis, D., Ghosh, S.K.: Power-efficient and latency-aware offloading in energy-harvested cloud-enabled small cell network. In: 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, pp. 1–4. IEEE, Piscataway, NJ

    Google Scholar 

  3. You, C., Huang, K., Chae, H.: Energy efficient mobile cloud computing powered by wireless energy transfer. IEEE J. Sel. Areas Commun. 34(5), 1757–1771 (2016)

    Article  Google Scholar 

  4. Zhang, Y., He, J., Guo, S.: Energy-efficient dynamic task offloading for energy harvesting mobile cloud computing. In: 2018 IEEE International Conference on Networking, Architecture and Storage (NAS), pp. 1–4. IEEE, Piscataway, NJ (2018)

    Google Scholar 

  5. Ibrahim, R.W., Jalab, H.A., Gani, A.: Cloud entropy management system involving a fractional power. Entropy. 18(1), 14 (2016)

    Article  Google Scholar 

  6. Wang, Y., Zheng, Z., Lyu, M.R.: Entropy-based service selection with uncertain QoS for mobile cloud computing. In: 2015 IEEE Conference on Collaboration and Internet Computing (CIC), pp. 252–259. IEEE (2015)

    Google Scholar 

  7. Ibrahim, R.W., Jalab, H.A., Gani, A.: Entropy solution of fractional dynamic cloud computing system associated with finite boundary condition. Bound. Value Probl. 2016(1), 1–12 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ibrahim, R.W., Jalab, H.A., Gani, A.: Perturbation of fractional multi-agent systems in cloud entropy computing. Entropy. 18(1), 31 (2016)

    Article  Google Scholar 

  9. Al-Sultan, S., Al-Doori, M.M., Al-Bayatti, A.H., Zedan, H.: A comprehensive survey on vehicular ad hoc network. J. Netw. Comput. Appl. 37, 380–392 (2014)

    Article  Google Scholar 

  10. Günay, F.B., Öztürk, E., Çavdar, T., Sinan Hanay, Y.: Vehicular ad hoc network (VANET) localization techniques: a survey. Arch. Computat. Meth. Eng. 28(4), 3001–3033 (2021)

    Article  Google Scholar 

  11. Ma, H., Zhao, D., Yuan, P.: Opportunities in mobile crowd sensing. IEEE Commun. Mag. 52(8), 29–35 (2014)

    Article  Google Scholar 

  12. Ghahramani, M., Zhou, M.C., Wang, G.: Urban sensing based on mobile phone data: approaches, applications, and challenges. IEEE/CAA J. Automat. Sin. 7(3), 627–637 (2020)

    Article  Google Scholar 

  13. Xu, Z., Zhang, H., Sugumaran, V., Raymond Choo, K.-K., Mei, L., Zhu, Y.: Participatory sensing-based semantic and spatial analysis of urban emergency events using mobile social media. EURASIP J. Wirel. Commun. Netw. 2016(1), 1–9 (2016)

    Article  Google Scholar 

  14. Karim, A., Siddiqa, A., Safdar, Z., Razzaq, M., Gillani, S.A., Tahir, H., Kiran, S., Ahmed, E., Imran, M.: Big data management in participatory sensing: issues, trends and future directions. Futur. Gener. Comput. Syst. 107, 942–955 (2020)

    Article  Google Scholar 

  15. Sisi, Z., Souri, A.: Blockchain technology for energy-aware mobile crowd sensing approaches in internet of things. Trans. Emerg. Telecommun. Technol., e4217 (2021), published online. https://doi.org/10.1002/ett.4217

  16. Huang, J., Kong, L., Dai, H.-N., Ding, W., Cheng, L., Chen, G., Jin, X., Zeng, P.: Blockchain-based mobile crowd sensing in industrial systems. IEEE Trans. Ind. Inf. 16(10), 6553–6563 (2020)

    Article  Google Scholar 

  17. Peng, K., Leung, V., Xu, X., Zheng, L., Wang, J., Huang, Q. A survey on mobile edge computing: focusing on service adoption and provision. Wirel. Commun. Mob. Comput. 2018, 1–17 (2018)

    Google Scholar 

  18. Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: a taxonomy, survey and future directions. In: Internet of Everything, pp. 103–130. Springer, Singapore (2018)

    Chapter  Google Scholar 

  19. Mukherjee, M., Shu, L., Wang, D.: Survey of fog computing: fundamental, network applications, and research challenges. IEEE Commun. Surv. Tutorials. 20(3), 1826–1857 (2018)

    Article  Google Scholar 

  20. Jalali, F., Hinton, K., Ayre, R., Alpcan, T., Tucker, R.S.: Fog computing may help to save energy in cloud computing. IEEE J. Sel. Areas Commun. 34(5), 1728–1739 (2016)

    Article  Google Scholar 

  21. Mukherjee, A., Deb, P., De, D., Buyya, R.: IoT-F2N: an energy-efficient architectural model for IoT using Femtolet-based fog network. J. Supercomput. 75(11), 7125–7146 (2019)

    Article  Google Scholar 

  22. Mukherjee, A., Deb, P., De, D., Buyya, R.: C2OF2N: a low power cooperative code offloading method for femtolet-based fog network. J. Supercomput. 74(6), 2412–2448 (2018)

    Article  Google Scholar 

  23. Mukherjee, A., De, D., Buyya, R.: E2R-F2N: energy-efficient retailing using a femtolet-based fog network. Softw. Pract. Exp. 49(3), 498–523 (2019)

    Article  Google Scholar 

  24. Mukherjee, A., De, D., Ghosh, S.K.: FogIoHT: a weighted majority game theory based energy-efficient delay-sensitive fog network for internet of health things. Internet Things. 11, 100181 (2020)

    Article  Google Scholar 

  25. Mukherjee, A., Ghosh, S., Behere, A., Ghosh, S.K., Buyya, R.: Internet of health things (IoHT) for personalized health care using integrated edge-fog-cloud network. J. Ambient Intell. Humaniz. Comput. 12, 943–959 (2021)

    Article  Google Scholar 

  26. Ghosh, S., Mukherjee, A., Ghosh, S.K., Buyya, R.: Mobi-iost: mobility-aware cloud-fog-edge-iot collaborative framework for time-critical applications. IEEE Trans. Netw. Sci. Eng. 7(4), 2271–2285 (2019)

    Article  Google Scholar 

  27. Colombo-Mendoza, L.O., Valencia-García, R., Rodríguez-González, A., Alor-Hernández, G., Samper-Zapater, J.J.: RecomMetz: a context-aware knowledge-based mobile recommender system for movie showtimes. Expert Syst. Appl. 42(3), 1202–1222 (2015)

    Article  Google Scholar 

  28. del Carmen Rodríguez-Hernández, M., Ilarri, S.: AI-based mobile context-aware recommender systems from an information management perspective: progress and directions. Knowl.-Based Syst. 215, 106740 (2021)

    Article  Google Scholar 

  29. Mukherjee, A., Deb, P., De, D.: Natural computing in mobile network optimization. In: Handbook of Research on Natural Computing for Optimization Problems, pp. 382–408. IGI Global, Pennsylvania, United States (2016)

    Google Scholar 

  30. De, D., Mukherjee, A.: Group handoff management in low power microcell-femtocell network. Digit. Commun. Netw. 3(1), 55–65 (2017)

    Article  Google Scholar 

  31. Mukherjee, A., De, D.: Octopus algorithm for wireless personal communications. Wirel. Pers. Commun. 101(1), 531–565 (2018)

    Article  Google Scholar 

  32. Guo, Y., Zhao, Z., Zhao, R., Lai, S., Dan, Z., Xia, J., Fan, L.: Intelligent offloading strategy design for relaying mobile edge computing networks. IEEE Access. 8, 35127–35135 (2020)

    Article  Google Scholar 

  33. Babar, M., Sohail Khan, M., Din, A., Ali, F., Habib, U., Sup Kwak, K.: Intelligent computation offloading for IoT applications in scalable edge computing using artificial bee colony optimization. Complexity. 2021, 1–12 (2021)

    Article  Google Scholar 

  34. Abro, A., Khuhro, S.A., Pathan, E., Koondhar, I.A., Bhutto, Z.A., Panhwar, M.A.: MCC: integration mobile cloud computing of big data for health-care analytics enhance. Psychol. Educ. J. 58(2), 3398–3405 (2021)

    Google Scholar 

  35. Karimi, Y., Haghi Kashani, M., Akbari, M., Mahdipour, E.: Leveraging big data in smart cities: a systematic review. Concurrency Computat Pract Exper. 33, e6379 (2021). https://doi.org/10.1002/cpe.6379

    Article  Google Scholar 

  36. Singh, S.K., Cha, J., Kim, T.W., Park, J.H.: Machine learning based distributed big data analysis framework for next generation web in IoT. Comput. Sci. Inf. Syst. 00, 12–12 (2021)

    Google Scholar 

  37. Moustafa, Nour. "A systemic IoT–fog–cloud architecture for big-data analytics and cyber security systems: a review of fog computing." In: Secure Edge Computing, pp. 41–50. CRC Press (2021). Publisher Location: Boca Raton, Florida

    Google Scholar 

  38. Deepa, N., Pham, Q.-V., Nguyen, D.C., Bhattacharya, S., Prabadevi, B., Gadekallu, T.R., Maddikunta, P.K.R., Fang, F., Pathirana, P.N.: A survey on blockchain for big data: approaches, opportunities, and future directions. arXiv preprint arXiv:2009.00858 (2020)

    Google Scholar 

  39. Cao, H., Cai, J.: Distributed multiuser computation offloading for cloudlet-based mobile cloud computing: a game-theoretic machine learning approach. IEEE Trans. Veh. Technol. 67(1), 752–764 (2017)

    Article  Google Scholar 

  40. Junior, W., Oliveira, E., Santos, A., Dias, K.: A context-sensitive offloading system using machine-learning classification algorithms for mobile cloud environment. Futur. Gener. Comput. Syst. 90, 503–520 (2019)

    Article  Google Scholar 

  41. Eom, H., Figueiredo, R., Cai, H., Zhang, Y., Huang, G.: Malmos: machine learning-based mobile offloading scheduler with online training. In: 2015 3rd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, pp. 51–60. IEEE, Piscataway, NJ (2015)

    Google Scholar 

  42. Sun, K., Chen, Z., Ren, J., Yang, S., Li, J.: M2c: energy efficient mobile cloud system for deep learning. In: 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 167–168. IEEE, Piscataway, NJ (2014)

    Google Scholar 

  43. Qiu, T., Wang, H., Li, K., Ning, H., Sangaiah, A.K., Chen, B.: SIGMM: a novel machine learning algorithm for spammer identification in industrial mobile cloud computing. IEEE Trans. Ind. Inf. 15(4), 2349–2359 (2018)

    Article  Google Scholar 

  44. Nguyen, K.K., Hoang, D.T., Niyato, D., Wang, P., Nguyen, D., Dutkiewicz, E.: Cyberattack detection in mobile cloud computing: a deep learning approach. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6. IEEE, Piscataway, NJ (2018)

    Google Scholar 

  45. Zheng, R., Jiang, J., Hao, X., Ren, W., Xiong, F., Ren, Y.: bcBIM: a blockchain-based big data model for BIM modification audit and provenance in mobile cloud. Math. Probl. Eng. 2019, 1–13 (2019)

    Article  Google Scholar 

  46. Vivekanandan, M., Sastry, V.N.: Blockchain based privacy preserving user authentication protocol for distributed Mobile cloud environment. Peer-to-Peer Netw. Appl. 14(3), 1572–1595 (2021)

    Article  Google Scholar 

  47. Xu, X., Chen, Y., Yuan, Y., Huang, T., Zhang, X., Qi, L.: Blockchain-based cloudlet management for multimedia workflow in mobile cloud computing. Multimedia Tools and Applications. 79(15), 9819–9844 (2020)

    Article  Google Scholar 

  48. Kim, H.-W., Jeong, Y.-S.: Secure authentication-management human-centric scheme for trusting personal resource information on mobile cloud computing with blockchain. HCIS. 8(1), 1–13 (2018)

    Google Scholar 

  49. Nguyen, D.C., Pathirana, P.N., Ding, M., Seneviratne, A.: Blockchain for secure ehrs sharing of mobile cloud based e-health systems. IEEE Access. 7(2019), 66792–66806 (2018)

    Google Scholar 

  50. Ray, P.P.: An introduction to dew computing: definition, concept and implications. IEEE Access. 6, 723–737 (2017)

    Article  Google Scholar 

  51. Gusev, M.: A dew computing solution for IoT streaming devices. In: 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 387–392. IEEE, Piscataway, NJ (2017)

    Google Scholar 

  52. Gushev, M.: Dew computing architecture for cyber-physical systems and IoT. Internet Things. 11, 100186 (2020)

    Article  Google Scholar 

  53. Ray, P.P., Dash, D., De, D.: Internet of things-based real-time model study on e-healthcare: device, message service and dew computing. Comput. Netw. 149, 226–239 (2019)

    Article  Google Scholar 

  54. Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell, N., et al.: Serverless computing: current trends and open problems. In: Research Advances in Cloud Computing, pp. 1–20. Springer, Singapore (2017)

    Google Scholar 

  55. McGrath, G., Brenner, P.R.: Serverless computing: design, implementation, and performance. In: 37th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 405–410. IEEE, Piscataway, NJ (2017)

    Google Scholar 

  56. Rahaman, M., Islam, M.M.: A review on progress and problems of quantum computing as a service (QcaaS) in the perspective of cloud computing. Global J. Comput. Sci. Technol. 15(4), 16–18 (2015)

    Google Scholar 

  57. Soeparno, H., Perbangsa, A.S.: Cloud quantum computing concept and development: a systematic literature review. Procedia Comput. Sci. 179, 944–954 (2021)

    Article  Google Scholar 

  58. Liu, L., Dou, X.: QuCloud: a new qubit mapping mechanism for multi-programming quantum computing in cloud environment. In: 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pp. 167–178. IEEE, Piscataway, NJ (2021)

    Google Scholar 

  59. Deb, P., Mukherjee, A., De, D.: A study of densification management using energy efficient femto-cloud based 5G mobile network. Wirel. Pers. Commun. 101(4), 2173–2191 (2018)

    Article  Google Scholar 

  60. Valenzuela-Valdés, J.F., Palomares, A., González-Macías, J.C., Valenzuela-Valdés, A., Padilla, P., Luna-Valero, F.: On the ultra-dense small cell deployment for 5G networks. In: 2018 IEEE 5G World Forum (5GWF), pp. 369–372. IEEE, Piscataway, NJ (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwesha Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, A., De, D., Buyya, R. (2022). New Research Directions for Green Mobile Cloud Computing. In: De, D., Mukherjee, A., Buyya, R. (eds) Green Mobile Cloud Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-08038-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08038-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08037-1

  • Online ISBN: 978-3-031-08038-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics