Skip to main content

YOLOv4-MobileNetV2-DW-LCARM: A Real-Time Ship Detection Network

  • Conference paper
  • First Online:
Knowledge Management in Organisations (KMO 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1593))

Included in the following conference series:

Abstract

Ship detection is a key research task for ship identification, monitoring and management to ensure the safety of shipping lanes and harbour. Object detection methods based on computer vision and deep learning has the potential for real-time ship detection, but has the challenges of accuracy, real-time, and lack of high-quality ship datasets. This paper proposes an object detection network named YOLOv4-MobileNetV2-DW-LCARM for ship detection, which is a hybrid application of YOLOv4, MobileNetV2, Depthwise separable convolution and a proposed Lightweight Channel Attention Residual Module (LCARM). To verify the effectiveness of the network, we built a ship dataset with 10 categories and 20216 samples for model training, ablation experiments, and comparative experiments. Compared with YOLOv4, the results show that our network reduces the number of parameters by 82.58% and improves the forward inference speed by 53.6%, reaching the accuracy of 62.75% ArP@0.75 and 94% AP@0.5. The proposed network can be deployed on edge devices for real-time ship detection because it has 24.82 FPS of processing speed. The proposed dataset construction methods also contribute to similar object detection tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References s

  1. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  2. Tang, J., Deng, C., et al.: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans. Geosci. Remote Sens. 53(3), 1174–1185 (2015)

    Article  Google Scholar 

  3. Wang, X., Chen, C.: Ship detection for complex background SAR images based on a multiscale variance weighted image entropy method. IEEE Geosci. Remote Sens. Lett. 14(2), 184–187 (2017)

    Article  Google Scholar 

  4. Yang, X., Sun, H., Fu, K., et al.: Automatic ship detection of remote sensing images from Google earth in complex scenes based on multi-scale rotation dense feature pyramid networks. Remote Sens. 10(1), 132 (2018)

    Article  Google Scholar 

  5. Li, Q., Mou, L., Liu, Q., et al.: HSF-Net: multiscale deep feature embedding for ship detection in optical remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 56(12), 7147–7161 (2018)

    Article  Google Scholar 

  6. Yuan, Y., Jiang, Z., Zhang, H., et al.: Ship detection in optical remote sensing images based on deep convolutional neural networks. J. Appl. Remote Sens. 11(4), 1 (2017)

    Google Scholar 

  7. Li, J., Qu, C., Shao, J.: Ship detection in SAR images based on an improved faster R-CNN. In: SAR in Big Data Era: Models, Methods & Applications. IEEE (2017)

    Google Scholar 

  8. Lee, W.-J., Roh, M.-I., Lee, H.-W., et al.: Detection and tracking for the awareness of surroundings of a ship based on deep learning. J. Comput. Des. Eng. 8(5), 1407–1430 (2021)

    Google Scholar 

  9. Li, H., Deng, L., Yang, C., et al.: Enhanced YOLOv3 tiny network for real-time ship detection from visual image. IEEE Access 9, 16692–16706 (2021)

    Article  Google Scholar 

  10. Ma, Z.: High-speed lightweight ship detection algorithm based on YOLO-v4 for three-channels RGB SAR image. Remote Sens. 13, 1909 (2021)

    Article  Google Scholar 

  11. Bochkovskiy, A., Wang, C.Y., Liao, H.: YOLOv4: optimal speed and accuracy of object detection (2020)

    Google Scholar 

  12. Wang, C.Y., Liao, H., Wu, Y.H., et al.: CSPNet: a new backbone that can enhance learning capability of CNN. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE (2020)

    Google Scholar 

  13. He, K., Ren, S., et al.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  14. Liu, S., et al.: Path aggregation network for instance segmentation. IEEE (2018)

    Google Scholar 

  15. Zhang, X., Zhou, X., Lin, M., et al.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices (2017)

    Google Scholar 

  16. Iandola, F.N., Han, S., Moskewicz, M.W., et al.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size (2016)

    Google Scholar 

  17. Howard, A.G., Zhu, M., Chen, B., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications (2017)

    Google Scholar 

  18. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2017)

    Google Scholar 

  19. Szegedy, C., Vanhoucke, V., Ioffe, S., et al.: Rethinking the inception architecture for computer vision, pp. 2818–2826. IEEE (2016)

    Google Scholar 

  20. Sandler, M., Howard, A., Zhu, M., et al.: MobileNetV2: inverted residuals and linear bottlenecks. In: Conference on Computer Vision and Pattern Recognition. IEEE (2018)

    Google Scholar 

  21. Jie, H., Li, S., Gang, S., et al.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. (2017)

    Google Scholar 

  22. Veit, A., Matera, T., Neumann, L., et al.: COCO-text: dataset and benchmark for text detection and recognition in natural images (2016)

    Google Scholar 

  23. Everingham, M., Eslami, S., Gool, L.V., et al.: The Pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Key R&D Program of China under Grant No. 2020YFB1707700.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Puchun Xie or Ran Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, P., Tao, R., Luo, X., Shi, Y. (2022). YOLOv4-MobileNetV2-DW-LCARM: A Real-Time Ship Detection Network. In: Uden, L., Ting, IH., Feldmann, B. (eds) Knowledge Management in Organisations. KMO 2022. Communications in Computer and Information Science, vol 1593. Springer, Cham. https://doi.org/10.1007/978-3-031-07920-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07920-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07919-1

  • Online ISBN: 978-3-031-07920-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics