Skip to main content

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

  • 157 Accesses

Abstract

This chapter is devoted to a brief discussion of the theoretical models of ball lightning that have appeared in recent decades. Material models and models of BL as chemical-thermal formations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamson J, Dinniss J (2000) Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil. Nature 403:519–521

    Article  ADS  Google Scholar 

  • Abrahamson J (2002) Ball lightning from atmospheric discharges via metal nanosphere oxidation: from soils, wood or metals. Phil Trans Roy Soc Lond 360(1790):61–88

    Article  ADS  MathSciNet  Google Scholar 

  • Abakumov VI, Bychkov VL, Bikmukhametova AR, Chernikov VA, Golubkov GV, Safronenkov DA, Zaitsev SV (2018) Production of long-lived heterogeneous structures using plasma. J Phys Conf Ser 1112:012022

    Article  Google Scholar 

  • Akhmanov SA (1991) In: Akhmanov SA (Ed.) Modern problems of laser physics. VINITI publishers

    Google Scholar 

  • Akishev YuS, Grushin ME, Kochetov IV, Napartovich AP, Trushkin NI (1999) Establishment of trichel impulses in the negative corona in the air. Fizika Plasmy 25(11):1–6

    Google Scholar 

  • Ardelyan NV, Bychkov VL, Kochetov IV, Kosmachevskii KV (2014) Prebreakdown air ionization in the atmosphere. In: Bychkov V, Golubkov G, Nikitin A (eds) The atmosphere and ionosphere: elementary processes, monitoring and ball lightning. Springer, Cham Heidelberg, pp 69–111

    Google Scholar 

  • Ardelyan NV, Bychkov VL, Kosmachevskii KV (2017) On electron attachment and detachment processes in dry air at low and moderate constant electric field. IEEE Trans Plasma Sci 45:3118–3124. https://doi.org/10.1109/TPS.2017.2773021

    Article  ADS  Google Scholar 

  • Ardelyan NV, Bychkov VL, Bychkov DV, Kosmachevskii KV (2013) Electron-beam and non-self-maintained driven plasmas PAC. Plasma assisted combustion, gasification and pollution control 1, Matveev. Outskirts press. Denver, Colorado, pp 183–372

    Google Scholar 

  • Atmosphere (1991) Reference book Sedunov YuS ed. Hydrometeoizdat Publishers, Leningrad

    Google Scholar 

  • Ball Lightning in the Laboratory (1994) Avramenko RF, Bychkov VL, Klimov AI, Sinkevich OA (eds) Khimia publishers, Moscow

    Google Scholar 

  • Barry JD (1980) Ball lightning and bead lightning. Plenum, New York

    Book  Google Scholar 

  • Bostik WH (1956) Experimental study of ionized matter projected across a magnetic field. Phys Rev 104(2):292–299

    Article  ADS  Google Scholar 

  • Bychkov VL (1994) Polymer ball lightning model. Phys Scr 50:591–599

    Article  ADS  Google Scholar 

  • Bychkov VL (2008) Response to “Comment on the paper by A. I. Nikitin “will it be Possible to solve the problem of ball lightning in the 21st century?”. Khim Fis 27 N 2:84–86

    Google Scholar 

  • Bychkov VL, Nikitin AI, Ivanenko IP, Nikitina TF, Velichko AM, Nosikov IA (2016) Ball lightning passage through a glass without breaking it. J Atmos Solar-Terr Phys 150–151:69–76

    Article  ADS  Google Scholar 

  • Bychkov VL (2002) Polymer composite ball lightning. Phil Trans R Soc Lond 360(1790):37–60

    Article  Google Scholar 

  • Bychkov VL, Abakumov VI (2018) Ball lightning as chemical-thermal electrically charged object. In Proc 14th Int Symp Ball Lightning (ISBL-18) 3–9 June 2018, Zelenogradsk, Kaliningrad region, Russia, pp 29–38

    Google Scholar 

  • Bychkov VL, Nikitin AI (2014) Ball lightning: a new step in understanding. In The Atmosphere and Ionosphere. Elementary Processes, Monitoring, and Ball Lightning. Bychkov VL, Golubkov GV, Nikitin AI eds Springer, Cham, Heidelberg, pp 201–367

    Google Scholar 

  • Bychkov VL, Chernikov VA, Osokin AA, Stepanov AI, Stepanov IG (2015) Modeling of artificial ball lightning with a help of capillary discharge. IEEE Trans Plasma Sci 43:4043–4047. https://doi.org/10.1109/TPS.2015.2478441

    Article  ADS  Google Scholar 

  • Bychkov VL, Esakov I I, Shestakov DV (2020) On electric field distribution the near a charged sphere. High-Energy Ball Lightning and its Big Charge. In Atmosphere, Ionosphere, Safety AIS Borshevkina OP, Golubkov MG, Karpov IV, eds. I. Kant university Publishers, Kaliningrad, pp 186–188

    Google Scholar 

  • Bychkov VL, Nikitin AI, Dijkhuis GC (2010) Ball lightning investigations. In The Atmosphere and Ionosphere. Dynamics, processes and monitoring. Bychkov VL, Golubkov GV, Nikitin AI eds. Springer, Dordrecht, pp 201–373

    Google Scholar 

  • Cameron RP (2018) Monochromatic knots and other unusual electromagnetic disturbances light localized in 3D. J Phys Commun 2:015024

    Article  Google Scholar 

  • Dijkhuis GC (1980) A model for ball lightning. Nature 248:150–151

    Article  ADS  Google Scholar 

  • Emelin S, Bychkov V, Astafiev A, Kovshik A, Pirozersky A (2012) Plasma combustion nature of artificial ball lightning. IEEE Trans Plasma Sci 40:3162–3165

    Article  ADS  Google Scholar 

  • Handel P (1975) Maser theory of ball lightning. Bull Am Phys Soc Ser. Ii 20(1):26

    Google Scholar 

  • Kawano S (2004, 2006) Is a spatial stem a ball lightning? In Proc 8th Int Symp Ball Lightning (ISBL04). Chung-li, Taiwan, pp 79–82, Proc ISBL-06, pp 91–94

    Google Scholar 

  • Koloc PM (1999a a) Formed PLASMAK artificial ball lightning results. In Proc 6th Int Symp Ball Lightning (ISBL99). Antwerp, Belgium, pp. 219–226; Fusion Technology, 1989, 15 N 3:1136

    Google Scholar 

  • Koloc PM (1999b) Comparison between PLASMAK BL model and formed PMKs. In Proc 6th Int Symp Ball Lightning (ISBL99). Antwerp, Belgium, pp 227–232

    Google Scholar 

  • Loitsyansky LG (1950) Mechanics of liquid and gas. State publishers of Technic-Theoretic literature, Moscow- Leningrad

    Google Scholar 

  • Lowke JJ (1996) A theory of ball lightning as an electric discharge. J Phys D (appl Phys) 29(5):1237–1244

    Article  ADS  Google Scholar 

  • Lowke JJ, Smith D, Nelson KE, Crompton RW, Murphy AB (2012) Birth of ball lightning. J Geoph Res 117:D19107. https://doi.org/10.1029/2012JD017921

    Article  ADS  Google Scholar 

  • Manykin EA, Norman GE (1999) Ball lightning as supercooled plasma condensed phase. In Proc 6th Int Symp Ball Lightning (ISBL99). Antwerp, Belgium, pp 120–125

    Google Scholar 

  • Manykin EA, Ozhovan MI, Poluektov PP (1981) On collective electronic state in a system of strongly-excited atoms. Doklady AN SSSR 260:1096–1098

    Google Scholar 

  • Manykin EA, Ozhovan MI, Poluektov PP (1983) Theory of the condensed state in the system of excited atoms. ZhETF 84(2):442–453

    Google Scholar 

  • Manykin EA, Ozhovan MI, Poluektov PP (1982) To the question of ball lightning nature. ZhTF 52:1474–1476

    Google Scholar 

  • Manykin EA, Ozhovan MI, Poluektov PP (1999) Rydberg matter and ball lightning. In Proc 6th Int Symp Ball Lightning (ISBL99) Antwerp, Belgium, pp 114–119

    Google Scholar 

  • Matsumoto T (1997) Ball lightning during underwater spark discharges and the Matsumae earthquakes. In Proc 5th Int Symp Ball Lightning (ISBL97). Tsugawa-Town, Japan, pp 193–201

    Google Scholar 

  • Matsumoto T (1999a) Micro ball lightning during underwater spark discharges. In Proc 6th Int Symp Ball Lightning (ISBL99). Antwerp, Belgium, pp 249–254

    Google Scholar 

  • Matsumoto T (1999b) Transport of micro ball lightning. In Proc 6th Int Symp Ball Lightning (ISBL99). Antwerp, Belgium, pp 255–262

    Google Scholar 

  • Nikitin AI (2006) Electrodynamic model of ball lightning. Khim Fiz 25(3):38–62

    Google Scholar 

  • Nikitin AI, Velichko AM, Nikitina TF, Stepanov IG (2018a) Analysis of the unique case of ball lightning observation in Mitino, the northwest district of Moscow. J Atmos Solar-Terr Phys 179:97–104

    Article  ADS  Google Scholar 

  • Nikitin AI, Bychkov VL, Nikitina TF., Velichko AM, Abakumov VI (2018b) Sources and components of ball lightning theory. Int Interdis Conf “Euler Readings MRSU 2017” IOP Publishing IOP Conf Ser: J Phys: Conf Ser 996:012011 doi:https://doi.org/10.1088/1742-6596/996/1/012011

  • Nikitin AI, Bychkov VL, Nikitina TF, Velichko AM (2014) High-energy ball lightning observations. IEEE Trans Plasma Sci 42:3906–391147

    Article  ADS  Google Scholar 

  • Nikitin AI, Velichko AM, Nikitina TF, Stepanov AI, Stepanov IG (2016) Observation and analysis of ball lightning group flights. Proc 5th Int Conf “Atmosphere, Ionosphere, Safety” (AIS -2016). Kaliningrad, pp 274–278

    Google Scholar 

  • Norman GE (1999) Ball lightning as overcooled non-ideal plasma. Khim Fiz 18(7):78–86

    Google Scholar 

  • Norman GE (2000) Ball lightning as a supercooled nonideal plasma. Chem Phys Rep18 N 7:1335–1352

    Google Scholar 

  • Ofuruton H, Kondo N, Kamogawa M, Aoki M, Ohtsuki YH (1997) Experimental condition of artificial ball lightning by using microwave and discharge. In Proc 5th Int Symp Ball Lightning (ISBL97). Tsugawa-Town, Japan, pp 215–217

    Google Scholar 

  • Ofuruton H, Kondo N, Kamogawa M, Aoki M, Ohtsuki YH (2001) Experimental condition for ball lightning creation by using air gap discharge embedded in microwave field. J Geoph Res 106(D12):12367–12369

    Article  ADS  Google Scholar 

  • Oreshko AG (2006) Generation of laboratory ball lightning. J Phys Conf Series 44:172–132

    Article  MathSciNet  Google Scholar 

  • Physical quantities (1991) Handbook. Grigoriev IS, Meilikhov EZ (ed), Energoatomizdat publishers, Moscow

    Google Scholar 

  • Rabinowitz M (2001) Little black hole ball lightning models agrees with observations. Abs 7-th Int Symp Ball Lightning July 26–29 Univ. of Missouri. St Louis. 2001. Missouri, p 21

    Google Scholar 

  • Raiser YuP (1992) Physics of gas discharge. Nauka Publishers, Moscow

    Google Scholar 

  • Rañada AF, Trueba JL (1996) Ball lightning as an electromagnetic knot? Nature 383:32

    Article  ADS  Google Scholar 

  • Rañada AF, Soler M, Trueba JL (1999) Ball lightnings and force-free magnetic knots. In Proc 6th Int Symp Ball Lightning (ISBL99). Antwerp, Belgium, pp 102–107

    Google Scholar 

  • Shafranov VD (1957) On equilibrium magnetohydrodynamic configurations. ZETF 33 3(9):710–722

    Google Scholar 

  • Singer S (1973) The nature of ball lightning. Mir Publishers, Moscow

    Google Scholar 

  • Shmatov ML (2003) New model and estimation of the danger of ball lightning. J Plasma Phys 69(6):507–527

    Article  ADS  Google Scholar 

  • Shchedrin AI (2018) Relativistic model of BL. Hotline-Telecom Publishers, Moscow

    Google Scholar 

  • Smirnov BM (1987) Introduction to plasma physics. Nauka Publishers, Moscow

    Google Scholar 

  • Smirnov BM (1988) The problem of ball lightning. Nauka Publishers, Moscow

    Google Scholar 

  • Smirnov BM (1993) The problem of ball lightning. Phys Rep 224:151–263

    Article  ADS  Google Scholar 

  • Stakhanov IP (1996) On the physical nature of ball lightning. Nauchnyi mir Publishers, Moscow

    Google Scholar 

  • Stenhoff M (1999) Ball Lightning. An Unsolved Problem in Atmospheric Physics. Kluwer Publishers, New York

    Google Scholar 

  • Terletsky YaP, Rybakov YuP (1980) Electrodynamics. Vysshaya shkola Publishers, Moscow

    Google Scholar 

  • Vlasov AN (2009) Ball lightning—induction discharge in a vortex ring? Nauka I Zhizn N7:28–34

    Google Scholar 

  • Vlasov AN (2006) Ball lightning as the current layer induced in a vortex. Proc 9th Int Symp Ball Lightning (ISBL06). Eindhoven, Netherlands, pp 243–249

    Google Scholar 

  • Wu HC (2016) Relativistic-microwave theory of BL. Sci Rep 6:26263. https://doi.org/10.1038/srep2826311

    Article  ADS  Google Scholar 

  • Zaitsev FS, Bychkov VL (2021) Mathematical modeling of electromagnetic and gravitational phenomena by the methology of continuous media mechanics. MAKS PRESS Publishers https://doi.org/10.29003/m2011.978-5-317-06604-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir L. Bychkov .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bychkov, V.L. (2022). About Theoretical Hypotheses of BL. In: Natural and Artificial Ball Lightning in the Earth’s Atmosphere. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-07861-3_5

Download citation

Publish with us

Policies and ethics