Skip to main content

Blockchain Peer-to-Peer Network: Performance and Security

  • Chapter
  • First Online:
Handbook on Blockchain

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 194))

  • 1425 Accesses

Abstract

Mistrusting nodes in a blockchain can reach consensus without the need of a trusted central entity. Instead, the nodes reach consensus through exchanging information on a peer-to-peer (P2P) network, without pre-established identities. Serving as the foundation of the blockchain, the P2P network plays critical roles in all performance and security aspects of the blockchain system. While P2P networks had been previously examined for many applications domains, including the file sharing systems, there is relatively less understanding on blockchain P2P networks that differs substantially from traditional P2P systems. In this chapter, we will cover different aspects of blockchain P2P networks from topology, peer discovery, known attacks, and defenses to improvement proposals to increase the throughput and reduce the latency in blockchain. Finally, we investigate theoretical limit on the throughput of blockchain systems in which nodes have heterogeneous capacities. We provide insights and discussion on how to construct a network to achieve the maximum theoretical limit in throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/ethereum/wiki.

  2. 2.

    In Ethereum, the invite messages are equivalent to the NewBlockHashes or NewPooledTransactionHashes messages.

  3. 3.

    According to Bitcoin historical data [39], at the time of this writing (April 2021), the average block size is 1.08 MB and the average transaction size is 459 B.

References

  1. Swan, M.: Blockchain: blueprint for a new economy. O’Reilly Media, Inc. (2015)

    Google Scholar 

  2. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  3. Ethereum, “ethereum/sharding.” https://github.com/ethereum/sharding/blob/develop/docs/doc.md

  4. Chen, Y., Bellavitis, C.: Blockchain disruption and decentralized finance: the rise of decentralized business models. J. Bus. Ventur. Insights 13, e00151 (2020)

    Article  Google Scholar 

  5. Dinh, T.N., Thai, M.T.: Ai and blockchain: a disruptive integration. Computer 51(9), 48–53 (2018)

    Article  Google Scholar 

  6. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet of things. IEEE Access 4, 2292–2303 (2016)

    Article  Google Scholar 

  7. Huckle, S., Bhattacharya, R., White, M., Beloff, N.: Internet of things, blockchain and shared economy applications. Proc. Comput. Sci. 98, 461–466 (2016)

    Article  Google Scholar 

  8. Yue, X., Wang, H., Jin, D., Li, M., Jiang, W.: Healthcare data gateways: found healthcare intelligence on blockchain with novel privacy risk control. J. Med. Syst. 40(10), 218 (2016)

    Article  Google Scholar 

  9. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: Medrec: using blockchain for medical data access and permission management. In: International Conference on Open and Big Data (OBD), pp. 25–30. IEEE (2016)

    Google Scholar 

  10. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In: 2013 IEEE Thirteenth International Conference on Peer-to-Peer Computing (P2P), pp. 1–10. IEEE (2013)

    Google Scholar 

  11. Klarman, U., Basu, S., Kuzmanovic, A., Sirer, E.G.: Bloxroute: a scalable trustless blockchain distribution network whitepaper. IEEE Internet of Things J. (2018)

    Google Scholar 

  12. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On the security and performance of proof of work blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 3–16 (2016)

    Google Scholar 

  13. Kumar, R., Ross, K.W.: Peer-assisted file distribution: the minimum distribution time. In: 1st IEEE Workshop on Hot Topics in Web Systems and Technologies: HOTWEB’06, vol. 2006, pp. 1–11. IEEE (2006)

    Google Scholar 

  14. Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A., Singh, A.: Splitstream: high-bandwidth multicast in cooperative environments. ACM SIGOPS Oper. Syst. Rev. 37(5), 298–313 (2003)

    Article  Google Scholar 

  15. Liu, S., Chen, M., Sengupta, S., Chiang, M., Li, J., Chou, P.A.: P2p streaming capacity under node degree bound. In: 2010 IEEE 30th International Conference on Distributed Computing Systems, pp. 587–598. IEEE (2010)

    Google Scholar 

  16. Maymounkov, P., Mazieres, D.: Kademlia: a peer-to-peer information system based on the xor metric. In: International Workshop on Peer-to-Peer Systems, pp. 53–65. Springer (2002)

    Google Scholar 

  17. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference on Distributed Systems Platforms and Open Distributed Processing, pp. 329–350. Springer (2001)

    Google Scholar 

  18. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM Comput. Commun. Rev. 31(4), 149–160 (2001)

    Article  Google Scholar 

  19. Bitcoin book. https://github.com/bitcoinbook/bitcoinbook

  20. Heilman, E.: How many ip addresses can a dns query return? https://ethanheilman.tumblr.com/post/110920218915/how-many-ip-addresses-can-dns-query-return

  21. Bitcoin protocol documentation. https://en.bitcoin.it/wiki/Protocol_documentation

  22. Essaid, M., Park, S., Ju, H.-T.: Bitcoin’s dynamic peer-to-peer topology. Int. J. Netw. Manag. 30(5), e2106 (2020)

    Article  Google Scholar 

  23. Mariem, S.B., Casas, P., Romiti, M., Donnet, B., Stütz, R., Haslhofer, B.: All that glitters is not bitcoin–unveiling the centralized nature of the btc (ip) network. In NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium, pp. 1–9. IEEE (2020)

    Google Scholar 

  24. Gao, Y., Shi, J., Wang, X., Tan, Q., Zhao, C., Yin, Z.: Topology measurement and analysis on ethereum p2p network. In: IEEE Symposium on Computers and Communications (ISCC), vol. 2019, pp. 1–7. IEEE (2019)

    Google Scholar 

  25. Kim, S.K., Ma, Z., Murali, S., Mason, J., Miller, A., Bailey, M.: Measuring ethereum network peers. In: Proceedings of the Internet Measurement Conference, vol. 2018, pp. 91–104 (2018)

    Google Scholar 

  26. Corallo, M.: Compact block relay. https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki

  27. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-to-peer network. In: 24th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 15), pp. 129–144 (2015)

    Google Scholar 

  28. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: Generalizing selfish mining and combining with an eclipse attack. In: IEEE European Symposium on Security and Privacy (EuroS &P), vol. 2016, pp. 305–320. IEEE (2016)

    Google Scholar 

  29. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In: International Conference on Financial Cryptography and Data Security, pp. 436–454. Springer (2014)

    Google Scholar 

  30. Wüst, K., Gervais, A.: Ethereum eclipse attacks. Technical Report, ETH Zurich (2016)

    Google Scholar 

  31. Marcus, Y., Heilman, E., Goldberg, S.: Low-resource eclipse attacks on ethereum’s peer-to-peer network. IACR Cryptol. ePrint Arch. 2018, 236 (2018)

    Google Scholar 

  32. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: routing attacks on cryptocurrencies. In: IEEE Symposium on Security and Privacy (SP), vol. 2017, pp. 375–392. IEEE (2017)

    Google Scholar 

  33. Apostolaki, M., Marti, G., Müller, J., Vanbever, L.: Sabre: protecting bitcoin against routing attacks (2018). arXiv:1808.06254

  34. Ekparinya, P., Gramoli, V., Jourjon, G.: Impact of man-in-the-middle attacks on ethereum. In: IEEE 37th Symposium on Reliable Distributed Systems (SRDS), vol. 2018, pp. 11–20. IEEE (2018)

    Google Scholar 

  35. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in bitcoin p2p network. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 15–29 (2014)

    Google Scholar 

  36. Neudecker, T., Hartenstein, H.: Could network information facilitate address clustering in bitcoin? In: International Conference on Financial Cryptography and Data Security, pp. 155–169. Springer (2017)

    Google Scholar 

  37. Bojja Venkatakrishnan, S., Fanti, G., Viswanath, P.: Dandelion: redesigning the bitcoin network for anonymity. In: Proceedings of the ACM on Measurement and Analysis of Computing Systems, vol. 1, no. 1, p. 22 (2017)

    Google Scholar 

  38. Fanti, G., Venkatakrishnan, S.B., Bakshi, S., Denby, B., Bhargava, S., Miller, A., Viswanath, P.: Dandelion++ lightweight cryptocurrency networking with formal anonymity guarantees. Proc. ACM Meas. Anal. Comput. Syst. 2(2), 1–35 (2018)

    Article  Google Scholar 

  39. Bitcoin historical data. https://tradeblock.com/bitcoin/historical/

  40. Naumenko, G., Maxwell, G., Wuille, P., Fedorova, S., Beschastnikh, I.: Bandwidth-efficient transaction relay for bitcoin (2019). arXiv:1905.10518

  41. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 643–673. Springer (2017)

    Google Scholar 

  42. Nagayama, R., Banno, R., Shudo, K.: Identifying impacts of protocol and internet development on the bitcoin network. In: IEEE Symposium on Computers and Communications (ISCC), vol. 2020, pp. 1–6. IEEE (2020)

    Google Scholar 

  43. Corallo, M.: Bitcoin relay network

    Google Scholar 

  44. Fibre. http://bitcoinfibre.org/

  45. Basu, S., Eyal, I., Sirer, E.: Falcon. https://www.falcon-net.org/

Download references

Acknowledgements

This work was supported in part by NSF under grant CNS 2140411.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuc D. Thai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thai, P.D. et al. (2022). Blockchain Peer-to-Peer Network: Performance and Security. In: Tran, D.A., Thai, M.T., Krishnamachari, B. (eds) Handbook on Blockchain. Springer Optimization and Its Applications, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-031-07535-3_2

Download citation

Publish with us

Policies and ethics