Skip to main content

3D Printing in Endodontics

  • Chapter
  • First Online:
3D Printing in Oral Health Science
  • 692 Accesses

Abstract

The advent of 3D imaging, 3D virtual planning, and 3D printing has sparked considerable interest in endodontics. 3D printing technology has a wide range of applications in endodontic education, patient care, and research. The majority of applications have been in managing teeth with calcified pulp canals via guided access opening. It entails the acquisition of 3D data, a surface scan, their merging, the design of a virtual drill path and template, followed by printing. The template directs the drill to the root canal that has been apically extended. Similarly, guided endodontic microsurgery utilises a template to guide the drill for targeted osteotomy and root-end resection. Artificial tooth models can be created by digitising human teeth with cone-beam computed tomography (CBCT) or micro-computed tomography (CT) scans, followed by 3D printing. The benefits include ease of use, visualisation of internal anatomy, the ability to standardise morphology, and realistic simulation of the actual root canal configuration. Rapid prototyping enables the planning and fabrication of a replica of the donor tooth before autotransplantation. The replica is then used to prepare the alveolar socket at the recipient site before extracting the donor tooth, thereby shortening the extra-alveolar period and improving the donor tooth fit. 3D bioprinting is a technique that uses computer-aided design blueprints to produce complex tissue models such as pulp tissue swiftly. Stem cells, pulp scaffolds, injectable calcium phosphates, and growth factors can all be delivered using the 3D printing principle. To summarise, 3D printing has improved the speed, predictability, and safety of endodontic treatment. It enables virtual planning, which increases the operator’s preparedness before attempting complex procedures. Human error is improbable to occur with this technology, as proper planning ensures accurate execution. Endodontists should be familiar with this technological advancement to maximise its potential and raise the bar for patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson J, Wealleans J, Ray J. Endodontic applications of 3D printing. Int Endod J. 2018;51(9):1005–18.

    Article  Google Scholar 

  2. Shah P, Chong BS. 3D imaging, 3D printing and 3D virtual planning in endodontics. Clin Oral Invest. 2018;22:641–54.

    Article  Google Scholar 

  3. Drăgan OC, Fărcăşanu AŞ, Câmpian RS, Turcu RV. Human tooth and root canal morphology reconstruction using magnetic resonance imaging. Clujul Med. 2016;89(1):137–42.

    Google Scholar 

  4. Andreasen JO. Etiology and pathogenesis of traumatic dental injuries. A clinical study of 1,298 cases. Scand J Dent Res. 1970;78:329–42.

    Google Scholar 

  5. Andreasen FM, Zhijie Y, Thomsen BL. Relationship between pulp dimensions and development of pulp necrosis after luxation injuries in the permanent dentition. Endod Dent Traumatol. 1986;2:90–8.

    Article  Google Scholar 

  6. Andreasen JO. Luxation of permanent teeth due to trauma. A clinical and radiographic follow-up study of 189 injured teeth. Scand J Dent Res. 1970;78:273–86.

    Google Scholar 

  7. Andreasen FM, Yu Z, Thomsen BL, Andersen PK. Occurrence of pulp canal obliteration after luxation injuries in the permanent dentition. Endod Dent Traumatol. 1987;3:103–15.

    Article  Google Scholar 

  8. Smith JW. Calcific metamorphosis: a treatment dilemma. Oral Surg Oral Med Oral Pathol Oral Radiol. 1982;54:441–4.

    Article  Google Scholar 

  9. Jacobsen I, Kerekes K. Long-term prognosis of traumatized permanent anterior teeth showing calcifying processes in the pulp cavity. Scand J Dent Res. 1977;85:588–98.

    Google Scholar 

  10. https://www.aae.org/specialty/wp-content/uploads/sites/2/2019/02/19AAE_CaseDifficultyAssessmentForm.pdf. Accessed 22 Oct 2021.

  11. Cvek M, Granath L, Lundberg M. Failures and healing in endodontically treated non-vital anterior teeth with posttraumatically reduced pulpal lumen. Acta Odontol Scand. 1982;40:223–8.

    Article  Google Scholar 

  12. Kinariwala N, Samaranayake L. Guided endodontics. Cham, Switzerland AG: Springer Nature; 2021.

    Book  Google Scholar 

  13. Krastl G, Zehnder MS, Connert T, Weiger R, Kuhl S. Guided Endodontics: a novel treatment approach for teeth with pulp canal calcification and apical pathology. Dent Traumatol. 2016;32:240–6.

    Article  Google Scholar 

  14. Connert T, Zehnder MS, Amato M, Weiger R, Kühl S, Krastl G. Microguided Endodontics: a method to achieve minimally invasive access cavity preparation and root canal location in mandibular incisors using a novel computer-guided technique. Int Endod J. 2018;51(2):247–55.

    Article  Google Scholar 

  15. Krug R, Volland J, Reich S, Soliman S, Connert T, Krastl G. Guided endodontic treatment of multiple teeth with dentin dysplasia: a case report. Head Face Med. 2020;16(1):27.

    Article  Google Scholar 

  16. Shi X, Zhao S, Wang W, Jiang Q, Yang X. Novel navigation technique for the endodontic treatment of a molar with pulp canal calcification and apical pathology. Aust Endod J. 2018;44(1):66–70.

    Article  Google Scholar 

  17. Torres A, Lerut K, Lambrechts P, Jacobs R. Guided endodontics: use of a sleeveless guide system on an upper premolar with pulp canal obliteration and apical periodontitis. J Endod. 2021;47(1):133–9.

    Article  Google Scholar 

  18. Zehnder MS, Connert T, Weiger R, Krastl G, Kühl S. Guided endodontics: accuracy of a novel method for guided access cavity preparation and root canal location. Int Endod J. 2016;49(10):966–72.

    Article  Google Scholar 

  19. Connert T, Krug R, Eggmann F, Emsermann I, ElAyouti A, Weiger R, Kühl S, Krastl G. Guided endodontics versus conventional access cavity preparation: a comparative study on substance loss using 3-dimensional-printed teeth. J Endod. 2019;45(3):327–31.

    Article  Google Scholar 

  20. Connert T, Zehnder MS, Weiger R, Kühl S, Krastl G. Microguided endodontics: accuracy of a miniaturized technique for apically extended access cavity preparation in anterior teeth. J Endod. 2017;43(5):787–90.

    Article  Google Scholar 

  21. Kang M, In Jung H, Song M, Kim SY, Kim HC, Kim E. Outcome of nonsurgical retreatment and endodontic microsurgery: a meta-analysis. Clin Oral Investig. 2015;19:569–82.

    Article  Google Scholar 

  22. Strbac GD, Schnappauf A, Giannis K, Moritz A, Ulm C. Guided modern endodontic surgery: a novel approach for guided osteotomy and root resection. J Endod. 2017;43(3):496–501.

    Article  Google Scholar 

  23. Giacomino CM, Ray JJ, Wealleans JA. Targeted endodontic microsurgery: a novel approach to anatomically challenging scenarios using 3-dimensional-printed guides and trephine burs-a report of 3 cases. J Endod. 2018;44(4):671–7.

    Article  Google Scholar 

  24. Buniag AG, Pratt AM, Ray JJ. Targeted endodontic microsurgery: a retrospective outcomes assessment of 24 cases. J Endod. 2021;47(5):762–9.

    Article  Google Scholar 

  25. Kim JE, Shim JS, Shin Y. A new minimally invasive guided endodontic microsurgery by cone beam computed tomography and 3-dimensional printing technology. Restor Dent Endod. 2019;44(3):e29.

    Article  Google Scholar 

  26. Patel S, Aldowaisan A, Dawood A. A novel method for soft tissue retraction during periapical surgery using 3D technology: a case report. Int Endod J. 2017;50(8):813–22.

    Article  Google Scholar 

  27. Reymus M, Fotiadou C, Kessler A, et al. 3D printed replicas for endodontic education. Int Endod J. 2019;52:123–30.

    Article  Google Scholar 

  28. Mahindru DV, Mahendru P. Review of rapid prototyping-technology for the future. Glob J Comput Sci Technol Graphics Vision. 2013;13:27–38.

    Google Scholar 

  29. Gancedo-Caravia L, Bascones J, Garcıa-Barbero E, Arias A. Suitability of different tooth replicas for endodontic training: perceptions and detection of common errors in the performance of postgraduate students. Int Endod J. 2020;53:562–72.

    Article  Google Scholar 

  30. Decurcio DA, Lim E, Chaves GS, et al. Pre-clinical endodontic education outcomes between artificial versus extracted natural teeth: a systematic review. Int Endod J. 2019;52:1153–61.

    Google Scholar 

  31. Al-Rawi B, Hassan B, Vandenberge B, Jacobs R. Accuracy assessment of three-dimensional surface reconstructions of teeth from cone beam computed tomography scans. J Oral Rehabil. 2010;37:352–8.

    Article  Google Scholar 

  32. Christofzik D, Bartols A, Faheem MK, Schroeter D, Groessner-Schreiber B, Doerfer CE. Shaping ability of four root canal instrumentation systems in simulated 3D-printed root canal models. PLoS One. 2018;13(8):e0201129.

    Article  Google Scholar 

  33. Eken R, Sen OG, Eskitascioglu G, Belli S. Evaluation of the effect of rotary systems on stresses in a new testing model using a 3-dimensional printed simulated resin root with an oval-shaped canal: a finite element analysis study. J Endod. 2016;42(8):1273–8.

    Article  Google Scholar 

  34. Mohmmed SA, Vianna ME, Penny MR, Hilton ST, Knowles JC. The effect of sodium hypochlorite concentration and irrigation needle extension on biofilm removal from a simulated root canal model. Aust Endod J. 2017;43(3):102–9.

    Article  Google Scholar 

  35. Mohmmed SA, Vianna ME, Penny MR, Hilton ST, Mordan NJ, Knowles JC. Investigations into in situ Enterococcus faecalis biofilm removal by passive and active sodium hypochlorite irrigation delivered into the lateral canal of a simulated root canal model. Int Endod J. 2018;51(6):649–62.

    Article  Google Scholar 

  36. Byun C, Kim C, Cho S, Baek SH, Kim G, Kim SG, Kim SY. Endodontic treatment of an anomalous anterior tooth with the aid of a 3-dimensional printed physical tooth model. J Endod. 2015;41(6):961–5.

    Article  Google Scholar 

  37. Lee SJ, Jang KH, Spangberg LS, Kim E, Jung IY, Lee CY, Kum KY. Three-dimensional visualization of a mandibular first molar with three distal roots using computer-aided rapid prototyping. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(5):668–74.

    Article  Google Scholar 

  38. Kfir A, Telishevsky-Strauss Y, Leitner A, Metzger Z. The diagnosis and conservative treatment of a complex type 3 dens invaginatus using cone beam computed tomography (CBCT) and 3D plastic models. Int Endod J. 2013;46(3):275–88.

    Article  Google Scholar 

  39. Gok T, Capar ID, Akcay I, Keles A. Evaluation of different techniques for filling simulated C-shaped canals of 3-dimensional printed resin teeth. J Endod. 2017;43(9):1559–64.

    Article  Google Scholar 

  40. Zafar S, Renner MP, Zachar JJ. Dental trauma simulation training using a novel 3D printed tooth model. Dent Traumatol. 2020;36(6):641–7.

    Article  Google Scholar 

  41. Sharma S, Logani A. Third molar autotransplantation: a predictable treatment option in the era of dental implants. J Pierre Fauchard Acad (India). 2016;30:21–3.

    Article  Google Scholar 

  42. Verweij JP, Anssari Moin D, Wismeijer D, van Merkesteyn JPR. Replacing heavily damaged teeth by third molar autotransplantation with the use of cone-beam computed tomography and rapid prototyping. J Oral Maxillofac Surg. 2017;75(9):1809–16.

    Article  Google Scholar 

  43. Lee Y, Chang SW, Perinpanayagam H, Yoo YJ, Lim SM, Oh SR, Gu Y, Ahn SJ, Kum KY. Autotransplantation of mesiodens for missing maxillary lateral incisor with cone-beam CT-fabricated model and orthodontics. Int Endod J. 2014;47(9):896–904.

    Article  Google Scholar 

  44. Cahuana-Bartra P, Cahuana-Cárdenas A, Brunet-Llobet L, Ayats-Soler M, Miranda-Rius J, Rivera-Baró A. The use of 3D additive manufacturing technology in autogenous dental transplantation. 3D Print Med. 2020;6(1):16.

    Article  Google Scholar 

  45. Shahbazian M, Jacobs R, Wyatt J, Denys D, Lambrichts I, Vinckier F, Willems G. Validation of the cone beam computed tomography-based stereolithographic surgical guide aiding autotransplantation of teeth: clinical case-control study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115(5):667–75.

    Article  Google Scholar 

  46. Lee SJ, Kim E. Minimizing the extra-oral time in autogeneous tooth transplantation: use of computer-aided rapid prototyping (CARP) as a duplicate model tooth. Restor Dent Endod. 2012;37(3):136–41.

    Article  Google Scholar 

  47. Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod. 2007;33:377–90.

    Article  Google Scholar 

  48. Yu H, Zhang X, Song W, Pan T, Wang H, Ning T, Wei Q, Xu HHK, Wu B, Ma D. Effects of 3-dimensional bioprinting alginate/gelatin hydrogel scaffold extract on proliferation and differentiation of human dental pulp stem cells. J Endod. 2019;45(6):706–15.

    Article  Google Scholar 

  49. Athirasala A, Lins F, Tahayeri A, Hinds M, Smith AJ, Sedgley C, Ferracane J, Bertassoni LE. A novel strategy to engineer pre-vascularized full-length dental pulp-like tissue constructs. Sci Rep. 2017;7(1):3323.

    Article  Google Scholar 

  50. Duarte Campos DF, Zhang S, Kreimendahl F, Köpf M, Fischer H, Vogt M, Blaeser A, Apel C, Esteves-Oliveira M. Hand-held bioprinting for de novo vascular formation applicable to dental pulp regeneration. Connect Tissue Res. 2020;61(2):205–15.

    Article  Google Scholar 

  51. van der Meer WJ, Vissink A, Ng YL, Gulabivala K. 3D computer aided treatment planning in endodontics. J Dent. 2016;45:67–72.

    Article  Google Scholar 

  52. Cheng Q, Xia WW. Research and application of three-dimensional printed template in endodontics. Zhonghua Kou Qiang Yi Xue Za Zhi. 2019;54(1):67.

    Google Scholar 

  53. Moreno-Rabié C, Torres A, Lambrechts P, Jacobs R. Clinical applications, accuracy and limitations of guided endodontics: a systematic review. Int Endod J. 2020;53(2):214–31.

    Article  Google Scholar 

  54. Lio F, Mampieri G, Mazzetti V, Leggeri A, Arcuri L. Guided endodontic microsurgery in apicoectomy: a review. J Biol Regul Homeost Agents. 2021;35(3 Suppl. 1):47–55.

    Google Scholar 

  55. Macho ÁZ, Ferreiroa A, Rico-Romano C, Alonso-Ezpeleta LÓ, Mena-Álvarez J. Diagnosis and endodontic treatment of type II dens invaginatus by using cone-beam computed tomography and splint guides for cavity access: a case report. J Am Dent Assoc. 2015;146(4):266–70.

    Article  Google Scholar 

  56. Buchgreitz J, Buchgreitz M, Mortensen D, Bjørndal L. Guided access cavity preparation using cone-beam computed tomography and optical surface scans - an ex vivo study. Int Endod J. 2016;49(8):790–5.

    Article  Google Scholar 

  57. Mena-Álvarez J, Rico-Romano C, Lobo-Galindo AB, Zubizarreta-Macho Á. Endodontic treatment of dens evaginatus by performing a splint guided access cavity. J Esthet Restor Dent. 2017;29(6):396–402.

    Article  Google Scholar 

  58. Buchgreitz J, Buchgreitz M, Bjørndal L. Guided root canal preparation using cone beam computed tomography and optical surface scans - an observational study of pulp space obliteration and drill path depth in 50 patients. Int Endod J. 2019;52(5):559–68.

    Article  Google Scholar 

  59. Tavares WLF, Viana ACD, de Carvalho Machado V, Henriques LCF, Sobrinho APR. Guided endodontic access of calcified anterior teeth. J Endod. 2018;44(7):1195–9.

    Article  Google Scholar 

  60. Lara-Mendes ST d O, Barbosa CFM, Santa-Rosa CC, Machado VC. Guided endodontic access in maxillary molars using cone-beam computed tomography and computer-aided design/computer-aided manufacturing system: a case report. J Endod. 2018;44(5):875–9.

    Article  Google Scholar 

  61. Lara-Mendes STO, Barbosa CFM, Machado VC, Santa-Rosa CC. A new approach for minimally invasive access to severely calcified anterior teeth using the guided endodontics technique. J Endod. 2018;44(10):1578–82.

    Article  Google Scholar 

  62. Nayak A, Jain PK, Kankar PK, Jain N. Computer-aided design-based guided endodontic: a novel approach for root canal access cavity preparation. Proc Inst Mech Eng H. 2018;232(8):787–95.

    Article  Google Scholar 

  63. Torres A, Shaheen E, Lambrechts P, Politis C, Jacobs R. Microguided Endodontics: a case report of a maxillary lateral incisor with pulp canal obliteration and apical periodontitis. Int Endod J. 2019;52(4):540–9.

    Article  Google Scholar 

  64. Buchgreitz J, Buchgreitz M, Bjørndal L. Guided endodontics modified for treating molars by using an intracoronal guide technique. J Endod. 2019;45(6):818–23.

    Article  Google Scholar 

  65. de Athayde Casadei B, Lara-Mendes ST d O, Barbosa CFM, Araújo CV, de Freitas CA, Machado VC, Santa-Rosa CC. Access to original canal trajectory after deviation and perforation with guided endodontic assistance. Aust Endod J. 2020;46(1):101–6.

    Article  Google Scholar 

  66. Kostunov J, Rammelsberg P, Klotz A-L, Zenthöfer A, Schwindling FS. Minimization of tooth substance removal in normally calcified teeth using guided endodontics: an in vitro pilot study. J Endod. 2021;47(2):286–90.

    Article  Google Scholar 

  67. Maia LM, de Carvalho Machado V, da Silva NRFA, Brito Júnior M, da Silveira RR, Moreira Júnior G, Sobrinho APR. Case reports in maxillary posterior teeth by guided endodontic access. J Endod. 2019;45(2):214–8.

    Article  Google Scholar 

  68. Perez C, Finelle G, Couvrechel C. Optimisation of a guided endodontics protocol for removal of fibre-reinforced posts. Aust Endod J. 2020;46(1):107–14.

    Article  Google Scholar 

  69. Tchorz JP, Wrbas K-T, Hellwig E. Guided endodontic access of a calcified mandibular central incisor using a software-based three-dimensional treatment plan. Int J Comput Dent. 2019;22(3):273–81.

    Google Scholar 

  70. Loureiro MAZ, Elias MRA, Capeletti LR, Silva JA, Siqueira PC, Chaves GS, Decurcio DA. Guided endodontics: volume of dental tissue removed by guided access cavity preparation-an ex vivo study. J Endod. 2020;46(12):1907–12.

    Article  Google Scholar 

  71. Krug R, Reich S, Connert T, Kess S, Soliman S, Reymus M, Krastl G. Guided endodontics: a comparative in vitro study on the accuracy and effort of two different planning workflows. Int J Comput Dent. 2020;23(2):119–28.

    Google Scholar 

  72. Silva AS, Santos ACC, Caneschi C d S, Machado VC, Moreira AN, Morgan LFDSA, Tavares WLF. Adaptable fiberglass post after 3D guided endodontic treatment: novel approaches in restorative dentistry. J Esthet Restor Dent. 2020;32(4):364–70.

    Article  Google Scholar 

  73. Tavares WLF, Ferreira MVL, Machado V d C, Braga T, Amaral RR, Cohen S. Antimicrobial photodynamic therapy and guided endodontics: a case report. Photodiagn Photodyn Ther. 2020;31:101935.

    Article  Google Scholar 

  74. Leontiev W, Bieri O, Madörin P, Dagassan-Berndt D, Kühl S, Krastl G, Krug R, Weiger R, Connert T. Suitability of magnetic resonance imaging for guided endodontics: proof of principle. J Endod. 2021;47(6):954–60.

    Article  Google Scholar 

  75. Pujol ML, Vidal C, Mercadé M, Muñoz M, Ortolani-Seltenerich S. Guided endodontics for managing severely calcified canals. J Endod. 2021;47(2):315–21.

    Article  Google Scholar 

  76. Simon JC, Kwok JW, Vinculado F, Fried D. Computer-controlled CO(2) laser ablation system for cone-beam computed tomography and digital image guided endodontic access: a pilot study. J Endod. 2021;47(9):1445–52.

    Article  Google Scholar 

  77. Todd R, Resnick S, Zicarelli T, Linenberg C, Donelson J, Boyd C. Template-guided endodontic access. J Am Dent Assoc. 2021;152(1):65–70.

    Article  Google Scholar 

  78. Pinsky HM, Champleboux G, Sarment DP. Periapical surgery using CAD/CAM guidance: preclinical results. J Endod. 2007;33(2):148–51.

    Article  Google Scholar 

  79. Bahcall JK. Using 3-dimensional printing to create presurgical models for endodontic surgery. Compend Contin Educ Dent. 2014;35(8):e29–30.

    Google Scholar 

  80. Ye S, Zhao S, Wang W, Jiang Q, Yang X. A novel method for periapical microsurgery with the aid of 3D technology: a case report. BMC Oral Health. 2018;18(1):85.

    Article  Google Scholar 

  81. Ahn SY, Kim NH, Kim S, Karabucak B, Kim E. Computer-aided design/computer-aided manufacturing-guided endodontic surgery: guided osteotomy and apex localization in a mandibular molar with a thick buccal bone plate. J Endod. 2018;44(4):665–70.

    Article  Google Scholar 

  82. Peng L, Wang ZH, Sun YC, Qu W, Han Y, Liang YH. Computer aided design and three-dimensional printing for apicoectomy guide template. Beijing Da Xue Xue Bao. 2018;50(5):905–10.

    Google Scholar 

  83. Ackerman S, Aguilera FC, Buie JM, Glickman GN, Umorin M, Wang Q, Jalali P. Accuracy of 3-dimensional-printed endodontic surgical guide: a human cadaver study. J Endod. 2019;45(5):615–8.

    Article  Google Scholar 

  84. Sutter E, Lotz M, Rechenberg D-K, Stadlinger B, Rücker M, Valdec S. Guided apicoectomy using a CAD/CAM drilling template. Int J Comput Dent. 2019;22(4):363–9.

    Google Scholar 

  85. Fan Y, Glickman GN, Umorin M, Nair MK, Jalali P. A novel prefabricated grid for guided endodontic microsurgery. J Endod. 2019;45(5):606–10.

    Article  Google Scholar 

  86. Avantaggiato P, Piva A, Salamini A, Avantaggiato A, Terroni R, Carinci F. Technical note: Surgical guide for computer-aided endodontic surgery. J Biol Regul Homeost Agents. 2020;34(1 Suppl. 1):161–4.

    Google Scholar 

  87. George R, Cameron A, Meer M. Streamlining and simplification of surgical stent fabrication for micro-endodontic surgery. Aust Endod J. 2020;46(3):445–51.

    Article  Google Scholar 

  88. Tavares WLF, Fonseca FO, Maia LM, de Carvalho Machado V, Silva NRFA, Moreira Junior G, Sobrinho APR. 3D apicoectomy guidance: optimizing access for apicoectomies. J Oral Maxillofac Surg. 2020;78(3):357.e1–8.

    Article  Google Scholar 

  89. Hawkins TK, Wealleans JA, Pratt AM, Ray JJ. Targeted endodontic microsurgery and endodontic microsurgery: a surgical simulation comparison. Int Endod J. 2020;53(5):715–22.

    Article  Google Scholar 

  90. Benjamin G, Ather A, Bueno MR, Estrela C, Diogenes A. Preserving the neurovascular bundle in targeted endodontic microsurgery: a case series. J Endod. 2021;47(3):509–19.

    Article  Google Scholar 

  91. Ordinola-Zapata R, Bramante CM, Duarte MAH, Cavenago BC, Jaramillo D, Versiani MA. Shaping ability of reciproc and TF adaptive systems in severely curved canals of rapid microCT-based prototyping molar replicas. J Appl Oral Sci. 2014;22(6):509–15.

    Article  Google Scholar 

  92. Mohmmed SA, Vianna ME, Penny MR, Hilton ST, Mordan N, Knowles JC. A novel experimental approach to investigate the effect of different agitation methods using sodium hypochlorite as an irrigant on the rate of bacterial biofilm removal from the wall of a simulated root canal model. Dent Mater. 2016;32(10):1289–300.

    Article  Google Scholar 

  93. Robberecht L, Chai F, Dehurtevent M, Marchandise P, Bécavin T, Hornez J-C, Deveaux E. A novel anatomical ceramic root canal simulator for endodontic training. Eur J Dent Educ. 2017;21(4):e1–6.

    Article  Google Scholar 

  94. Liang X, Liao W, Cai H, Jiang S, Chen S. 3D-printed artificial teeth: accuracy and application in root canal therapy. J Biomed Nanotechnol. 2018;14(8):1477–85.

    Article  Google Scholar 

  95. Höhne C, Schmitter M. 3D printed teeth for the preclinical education of dental students. J Dent Educ. 2019;83(9):1100–6.

    Article  Google Scholar 

  96. Karatekin AÖ, Keleş A, Gençoğlu N. Comparison of continuous wave and cold lateral condensation filling techniques in 3D printed simulated C-shape canals instrumented with Reciproc Blue or Hyflex EDM. PLoS One. 2019;14(11):e0224793.

    Article  Google Scholar 

  97. Kustra P, Dobroś K, Zarzecka J. Making use of three-dimensional models of teeth, manufactured by stereolithographic technology, in practical teaching of endodontics. Eur J Dent Educ. 2021;25(2):299–304.

    Article  Google Scholar 

  98. Park Y-S, Baek S-H, Lee W-C, Kum K-Y, Shon W-J. Autotransplantation with simultaneous sinus floor elevation. J Endod. 2012;38(1):121–4.

    Article  Google Scholar 

  99. Jang J-H, Lee S-J, Kim E. Autotransplantation of immature third molars using a computer-aided rapid prototyping model: a report of 4 cases. J Endod. 2013;39(11):1461–6.

    Article  Google Scholar 

  100. Strbac GD, Schnappauf A, Giannis K, Bertl MH, Moritz A, Ulm C. Guided autotransplantation of teeth: a novel method using virtually planned 3-dimensional templates. J Endod. 2016;42(12):1844–50.

    Article  Google Scholar 

  101. Abella F, Ribas F, Roig M, Sánchez JAG, Durán-Sindreu F. Outcome of autotransplantation of mature third molars using 3-dimensional-printed guiding templates and donor tooth replicas. J Endod. 2018;44(10):1567–74.

    Article  Google Scholar 

  102. Soram O, Kim S, Lo HS, Choi J-Y, Kim H-J, Ryu G-J, Kim S-Y, Choi K-K, Kim D-S, Jang J-H. Virtual simulation of autotransplantation using 3-dimensional printing prototyping model and computer-assisted design program. J Endod. 2018;44(12):1883–8.

    Article  Google Scholar 

  103. Kim K, Choi H-S, Pang N-S. Clinical application of 3D technology for tooth autotransplantation: a case report. Aust Endod J. 2019;45(1):122–8.

    Article  Google Scholar 

  104. Strbac GD, Schnappauf A, Bertl MH, Vasak C, Ulm C, Giannis K. Guided osteotomy and guided autotransplantation for treatment of severely impacted teeth: a proof-of-concept report. J Endod. 2020;46(11):1791–8.

    Article  Google Scholar 

  105. Lucas-Taulé E, Llaquet M, Muñoz-Peñalver J, Somoza J, Satorres-Nieto M, Hernández-Alfaro F. Fully guided tooth autotransplantation using a multidrilling axis surgical stent: proof of concept. J Endod. 2020;46(10):1515–21.

    Article  Google Scholar 

  106. Sato M, Garcia-Sanchez A, Sanchez S, Chen I-P. Use of 3-dimensional-printed guide in hemisection and autotransplantation of a fusion tooth: a case report. J Endod. 2021;47(3):526–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidhartha Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S., Kumar, V., Chawla, A., Logani, A. (2022). 3D Printing in Endodontics. In: Chaudhari, P.K., Bhatia, D., Sharan, J. (eds) 3D Printing in Oral Health Science. Springer, Cham. https://doi.org/10.1007/978-3-031-07369-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07369-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07368-7

  • Online ISBN: 978-3-031-07369-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics