Skip to main content

Site-Specific Defect Detection in Composite Using Solitary Waves Based on Deep Learning

  • Conference paper
  • First Online:
European Workshop on Structural Health Monitoring (EWSHM 2022)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 270))

Included in the following conference series:

Abstract

We propose a real-time non-destructive evaluation technique for defect detection in composites using highly nonlinear solitary waves (HNSWs) and a deep learning algorithm based on the convolution neural network (CNN). This technique implements deep learning to identify the presence of defects and classify the defect locations in the thickness direction of composites through HNSWs with strong energy intensity and non-distortive nature. To collect HNSW datasets for training and validation of the deep learning algorithm, AS4/PEEK composite specimens with artificial delamination are fabricated and HNSW datasets are generated from the experimental setup of a granular crystal sensor. Testing pretrained CNN based algorithms verifies the performance of detecting and classifying defects by location in composite plates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hahn, H.T., Tsai, S.W.: Introduction to Composite Materials. Technomic Publishing Co., Inc., Lancaster (1980)

    Google Scholar 

  2. Daniel, L.M., Ishai, O.: Engineering Mechanics of Composite Materials. Oxford University Press, New York (1994)

    Google Scholar 

  3. Sohn, H., et al.: A review of structural health monitoring literature: 1996–2001. Report. LA-13976-MS: Los Alamos National Laboratory, NM (2003)

    Google Scholar 

  4. Salawu, O.S.: Detection of structural damage through changes in frequency: a review. Eng. Struct. 19(9), 718–723 (1997)

    Article  Google Scholar 

  5. Giurgiutiu, V.: Structural Health Monitoring of Aerospace Composites (2015)

    Google Scholar 

  6. Ramakrishnan, M., Rajan, G., Semenova, Y., Farrell, G.: Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials. Sensors 16(1), 99 (2016)

    Article  Google Scholar 

  7. Yang, J., Silvestro, C., Khatri, D., De Nardo, L., Daraio, C.: Interaction of highly nonlinear solitary waves with linear elastic media. Phys. Rev. E 83, 046606 (2001)

    Article  Google Scholar 

  8. Khatri, D., Rizzo, P., Daraio, C.: Highly nonlinear waves’ sensor technology for highway infrastructures. In: Proceedings of SPIE Smart Structures/Nondestructive Evaluation and Health Monitoring, San Diego, CA, vol. 6934, p. 225 (2008)

    Google Scholar 

  9. Xianglei, N., Rizzo, P., Daraio, C.: Actuators for the generation of highly nonlinear solitary waves. Rev. Sci. Instrum. 82, 034902 (2011)

    Article  Google Scholar 

  10. Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Strongly nonlinear waves in a chain of Teflon beads. Phys. Rev. E 72(1), 016603 (2005)

    Article  Google Scholar 

  11. Sen, S., Hong, J., Bang, J., Avalos, E., Doney, R.: Solitary waves in the granular chain. Phys. Rep. 462, 21–66 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ni, X., Rizzo, P., Yang, J., Khatri, D., Daraio, C.: Monitoring the hydration of cement by means of highly nonlinear solitary waves. NDT E Int. 52, 76–85 (2012)

    Article  Google Scholar 

  13. Schiffer, A., Alia, R.A., Cantwell, W., Kim, E., Lee, D., Kim, T.-Y.: Elastic interaction between nonlinear solitary waves in granular chains and composite beams: experiments and modelling. Int. J. Mech. Sci. 170, 105350 (2020)

    Article  Google Scholar 

  14. Schiffer, A., Kim, T.-Y.: Modelling of the interaction between nonlinear solitary waves and composite beams. Int. J. Mech. Sci. 151, 181–192 (2019)

    Article  Google Scholar 

  15. Yang, J., Khatri, D., Anzel, P., Daraio, C.: Interaction of highly nonlinear solitary waves with thin plates. Int. J. Solids Struct. 49, 1463–1471 (2012)

    Article  Google Scholar 

  16. Schiffer, A., Kim, T.-Y.: Interaction of highly nonlinear solitary waves with rigid polyurethane foams. Int. J. Solids Struct. 152–152, 39–50 (2018)

    Article  Google Scholar 

  17. Kim, E., Restuccia, F., Yang, J., Daraio, C.: Solitary wave-based delamination detection in composite plates using a combined granular crystal sensor and actuator. Smart Mater. Struct. 24, 125004 (2015)

    Article  Google Scholar 

  18. Singhal, T., Kim, E., Kim, T.-Y., Yang, J.: Weak bond detection in composites using highly nonlinear solitary waves. Smart Mater. Struct. 26, 055011 (2017)

    Article  Google Scholar 

  19. Schiffer, A., Alkhaja, A.I., Yang, J., Esfahani, E.N., Kim, T.Y.: Interaction of highly nonlinear solitary waves with elastic solids containing a spherical void. Int. J. Solids Struct. 118–119, 204–212 (2017)

    Article  Google Scholar 

  20. Yoon, S., Schiffer, A., Cantwel, W.J., Kim, T.-Y.: Detection of core-skin disbands in honeycomb composite sandwich structures using highly nonlinear solitary wave. Compos. Struct. 256, 113071 (2021)

    Article  Google Scholar 

  21. Nasrollahi, A., Lucht, R., Rizzo, P.: Solitary waves to assess the internal pressure and the rubber degradation of tennis balls. Exp. Mech. 59, 65–77 (2019)

    Article  Google Scholar 

  22. Ni, X., Rizzo, P.: Highly Nonlinear solitary waves for the inspection of adhesive joints. Exp. Mech. 52, 1493–1501 (2012)

    Article  Google Scholar 

  23. Yang, J., et al.: Site-specific quantification of bone quality using highly nonlinear solitary waves. J. Biomech. Eng. 134, 101001 (2012)

    Article  Google Scholar 

  24. Yoon, S., Schiffer, A., Kim, J.J., Jang, I.G., Lee, S., Kim, T.-Y.: Numerical predictions of the interaction between highly nonlinear solitary waves and the microstructure of trabecular bone in the femoral head. J. Mech. Behav. Biomed. Mater. 109, 103805 (2020)

    Article  Google Scholar 

  25. Yoon, S., Schiffer, A., Jang, I.G., Lee, S., Kim, T.-Y.: Predictions of the elastic modulus of trabecular bone in the femoral head and the intertrochanter: a solitary wave-based approach. Biomech. Model. Mechanobiol. 20(5), 1733–1749 (2021). https://doi.org/10.1007/s10237-021-01473-1

    Article  Google Scholar 

  26. Kim, T.-Y., Yoon, S., Schiffer, A., Jang, I.G., Lee, S.: Site-specific quality assessment of trabecular bone using highly nonlinear solitary waves. Lect. Notes Civ. Eng. 127, 893–901 (2021)

    Article  Google Scholar 

  27. Yang, J., et al.: Nondestructive evaluation of orthopaedic implant stability in THA using highly nonlinear solitary waves. Smart Mater. Struct. 21, 012002 (2012)

    Article  Google Scholar 

  28. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53(8), 5455–5516 (2020). https://doi.org/10.1007/s10462-020-09825-6

    Article  Google Scholar 

  29. Shrestha, A., Mahmood, A.: Review of deep learning algorithms and architectures. IEEE Access 7, 53040–53065 (2019)

    Article  Google Scholar 

  30. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  31. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  32. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from Khalifa University Competitive Internal Research Award (CIRA) (No. CIRA-2019-009), Award No. RCII-2019-003, and the Center for Cyber-Physical Systems, Khalifa University, under Grant Number 8474000137-RC1-C2PS-T3. This research was also performed as part of the Aerospace Research and Innovation Center (ARIC) program which is jointly-funded by STRATA Manufacturing PJSC (a Mubadala company) and Khalifa University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Yeon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, TY., Yoon, S., Yeun, C.Y., Cantwell, W.J., Cho, CS. (2023). Site-Specific Defect Detection in Composite Using Solitary Waves Based on Deep Learning. In: Rizzo, P., Milazzo, A. (eds) European Workshop on Structural Health Monitoring. EWSHM 2022. Lecture Notes in Civil Engineering, vol 270. Springer, Cham. https://doi.org/10.1007/978-3-031-07322-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07322-9_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07321-2

  • Online ISBN: 978-3-031-07322-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics