Skip to main content

Statistical Learning for Change Point and Anomaly Detection in Graphs

  • Chapter
  • First Online:
Artificial Intelligence, Big Data and Data Science in Statistics

Abstract

Complex systems which can be represented in the form of static and dynamic graphs arise in different fields, e.g., communication, engineering and industry. One of the interesting problems in analysing dynamic network structures is monitoring changes in their development. Statistical learning, which encompasses both methods based on artificial intelligence and traditional statistics, can be used to progress in this research area. However, the majority of approaches apply only one or the other framework. In this chapter, we discuss the possibility of bringing together both disciplines in order to create enhanced network monitoring procedures focussing on the example of combining statistical process control and deep learning algorithms. Together with the presentation of change point and anomaly detection in network data, we propose to monitor the response time of ambulance service, applying jointly the control chart for quantile function values and a graph convolutional network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erdös, P., Rényi, A.: On random graphs, I. Publ. Math. 6, 290–297 (1959)

    MATH  Google Scholar 

  2. Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30, 1141–1144 (1959)

    Article  MATH  Google Scholar 

  3. Grennan, K.S., Chen, C., Gershon, E.S., Liu, C.: Molecular network analysis enhances understanding of the biology of mental disorders. Bioessays Wiley Online Library 36(6), 606–616 (2014)

    Google Scholar 

  4. O’malley, A.J., Marsden, P.V.: The analysis of social networks. Health Serv. Outcome Res. Methodol. 8(4), 222–269 (2008)

    Article  Google Scholar 

  5. Schweitzer, F., Fagiolo, G., Sornette, D., Vega-Redondo, F., Vespignani, A. and White, D. R.: Economic networks: the new challenges. Sci. Am. Assoc. Adv. Sci. 325(5939), 422–425 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media, Berlin (2009)

    Book  MATH  Google Scholar 

  7. Kang, B.S., Park, S.C.: Integrated machine learning approaches for complementing statistical process control procedures. Decis. Support. Syst. 29(1), 59–72 (2000)

    Article  Google Scholar 

  8. Psarakis, S.: The use of neural networks in statistical process control charts. Qual. Reliab. Eng. Int. 27(5), 641–650 (2011)

    Article  Google Scholar 

  9. Fountoulaki, A., Karacapilidis, N., Manatakis, M.: Augmenting statistical quality control with machine learning techniques: an overview. Int. J. Bus. Syst. Res. 5(6), 610–626 (2011)

    Article  Google Scholar 

  10. Demircioglu Diren, D., Boran, S., Cil, I.: Integration of machine learning techniques and control charts for multivariate processes. Sci. Iran. 27(6), 3233–3241 (2020)

    Google Scholar 

  11. Khoza, S.C., Grobler, J.: Comparing machine learning and statistical process control for predicting manufacturing performance. In: EPIA Conference on Artificial Intelligence, pp. 108–119. Springer, Berlin (2019)

    Google Scholar 

  12. Zan, T., Liu, Z., Su, Z., Wang, M., Gao, X., Chen, D.: Statistical process control with intelligence based on the deep learning model. Appl. Sci. 10(1), 308 (2020)

    Article  Google Scholar 

  13. Apsemidis, A., Psarakis, S.: Support vector machines: a review and applications in statistical process monitoring. In: Data Analysis and Applications 3: Computational, Classification, Financial, Statistical and Stochastic Methods, vol. 5, pp. 123–144 (2020)

    Google Scholar 

  14. Chen, L., Yu, T., Liu, M.: A semantic graph model. In: OTM Confederated International Conferences “On the Move to Meaningful Internet Systems”, pp. 378–396. Springer, Berlin (2015)

    Google Scholar 

  15. Brevier, G., Rizzi, R., Vialette, S.: Pattern matching in protein-protein interaction graphs. In: International Symposium on Fundamentals of Computation Theory. Springer, Berlin (2007)

    Google Scholar 

  16. Montgomery, D.C.: (2009) Introduction to Statistical Quality Control. John Wiley & Sons, Inc., Hoboken

    Google Scholar 

  17. Grimshaw, S.D., Alt, F.B.: Control charts for quantile function values. J. Qual. Technol. 29(1), 1–7 (1997)

    Article  Google Scholar 

  18. Kanji, G.K., Arif, O.H.: Median rankit control chart by the quantile approach. J. Appl. Stat. 27(6), 757–770 (2000)

    Article  Google Scholar 

  19. Ning, X., Wu, C.: Improved design of quantile-based control charts. J. Chin. Inst. Indust. Eng. 28(7), 504–511 (2011)

    Google Scholar 

  20. Park, K., Jung, D., Kim, J.M.: Control charts based on randomized quantile residuals. Appl. Stoch. Model. Bus. Ind. 36(4), 716–729 (2020)

    Article  MathSciNet  Google Scholar 

  21. Hwang, W.Y.: Quantile-based control charts for poisson and gamma distributed data. J. Korean Stat. Society 50(4), 1129–1146 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. McCulloh, I., Carley, K.M.: Detecting change in longitudinal social networks. Technical report. Military Academy West Point NY Network Science Center (NSC) (2011)

    Google Scholar 

  23. Wilson J.D., Stevens, N.T., Woodall W.H.: Modeling and detecting change in temporal networks via the degree corrected stochastic block model. Qual. Reliab. Eng. Int. 35(5), 1363–1378 (2019)

    Article  Google Scholar 

  24. Hosseini, S.S., Noorossana, R.: Performance evaluation of EWMA and CUSUM control charts to detect anomalies in social networks using average and standard deviation of degree measures. Qual. Reliab. Eng. Int. 34(4), 477–500 (2018)

    Article  Google Scholar 

  25. Sparks R., Wilson J.D.: Monitoring communication outbreaks among an unknown team of actors in dynamic networks. J. Qual. Technol. 51(4), 353–374 (2019)

    Article  Google Scholar 

  26. Malinovskaya, A., Otto, P.: Online network monitoring. Stat. Methods Appl. 30(5), 1337–1364 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Farahani E.M., Baradaran Kazemzadeh R., Noorossana R., Rahimian G.: A statistical approach to social network monitoring. Commun. Stat. Theory Methods 46(22), 11,272–11,288 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Noorossana R., Hosseini, S.S., Heydarzade, A.: An overview of dynamic anomaly detection in social networks via control charts. Qual. Reliab. Eng. Int. 34(4), 641–648 (2018)

    Article  Google Scholar 

  29. Azarnoush, B., Paynabar, K., Bekki, J., Runger, G.: Monitoring temporal homogeneity in attributed network streams. J. Qual. Technol. 48(1), 28–43 (2016)

    Article  Google Scholar 

  30. Miller, B.A., Arcolano, N., Bliss, N.T.: Efficient anomaly detection in dynamic, attributed graphs: emerging phenomena and big data. In: 2013 IEEE International Conference on Intelligence and Security Informatics, pp. 179–184. IEEE, Piscataway (2013)

    Google Scholar 

  31. Heard, N.A., Weston, D.J., Platanioti, K., Hand, D.J.: Bayesian anomaly detection methods for social networks. Ann. Appl. Stat. 4(2), 645–662 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Priebe, C.E., Conroy, J.M., Marchette, D.J., Park, Y.: Scan statistics on enron graphs. Comput. Math. Organ. Theory 11(3), 229–247 (2005)

    Article  MATH  Google Scholar 

  33. Woodall, W.H., Zhao, M.J., Paynabar, K., Sparks, R., Wilson, J.D.: An overview and perspective on social network monitoring. IISE Trans. 49(3), 354–365 (2017)

    Article  Google Scholar 

  34. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data Min. Knowl. Disc. 29(3), 626–688 (2015)

    Article  MathSciNet  Google Scholar 

  35. Ranshous, S., Shen, S., Koutra, D., Harenberg, S., Faloutsos, C., Samatova, N.F.: Anomaly detection in dynamic networks: a survey. Wiley Interdiscip. Rev. Comput. Stat. 7(3), 223–247 (2015)

    Article  MathSciNet  Google Scholar 

  36. Zhao, M.J., Driscoll, A.R., Sengupta, S., Stevens, N.T., Fricker Jr, R.D., Woodall, W.H.: The effect of temporal aggregation level in social network monitoring. PLOS One 13(12) (2018)

    Google Scholar 

  37. Wang, X., Du, Y., Cui, P., Yang, Y.: OCGNN: one-class classification with graph neural networks. arXiv preprint: 2002.09594 (2020)

    Google Scholar 

  38. Zheng, L., Li, Z., Li, J., Li, Z., Gao, J.: AddGraph: anomaly detection in dynamic graph using attention-based temporal GCN. IJCAI 4419–4425 (2019)

    Google Scholar 

  39. Kumagai, A., Iwata, T., Fujiwara, Y.: Semi-supervised anomaly detection on attributed graphs. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, Piscataway (2021)

    Google Scholar 

  40. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications. arXiv preprint: 1709.05584 (2017)

    Google Scholar 

  41. Hamilton, W.L.: Graph representation learning. Synth. Lect. Artif. Intell. Mach. Learn. 14(3), 1–159 (2020)

    MATH  Google Scholar 

  42. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

    Article  Google Scholar 

  43. Chen, F., Wang, Y.C., Wang, B., Kuo, C.C.J.: Graph representation learning: a Survey. APSIPA Trans. Signal Inform. Process. 9 (2020)

    Google Scholar 

  44. Gogoglou, A., Bruss, C.B., Nguyen, B., Sarshogh, R., Hines, K.E.: Quantifying challenges in the application of graph representation learning. In: 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1519–1526. IEEE, Piscataway (2020)

    Google Scholar 

  45. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  46. Calin, O.: Deep Learning Architectures. Springer International Publishing, New York City (2020)

    Book  MATH  Google Scholar 

  47. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  48. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations, ICLR (2017)

    Google Scholar 

  49. Asif, N.A., Sarker, Y., Chakrabortty, R.K., Ryan, M.J., Ahamed, M.H., Saha, D.K., Badal, F.R., Das, S.K., Ali, M.F., Moyeen, S.I., Islam, M.R.: Graph neural network: a comprehensive review on Non-euclidean space. IEEE Access 9, 60588–60606 (2021)

    Article  Google Scholar 

  50. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18-42 (2017)

    Article  Google Scholar 

  51. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning (2017)

    Google Scholar 

  52. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  53. Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020)

    Article  Google Scholar 

  54. Zhang, S., Tong, H., Xu, J., Maciejewski, R.: Graph convolutional networks: a comprehensive review. Comput. Soc. Netw. 6(1), 11 (2019)

    Article  Google Scholar 

  55. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5115–5124 (2017)

    Google Scholar 

  56. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric. arXiv preprint: 1903.02428 (2019)

    Google Scholar 

  57. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint: 1607.06450 (2016)

    Google Scholar 

  58. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the German Research Foundation within the project 412992257. The authors thank Artem Leichter and Thomas Cope for valuable insight and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Philipp Otto or Torben Peters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malinovskaya, A., Otto, P., Peters, T. (2022). Statistical Learning for Change Point and Anomaly Detection in Graphs. In: Steland, A., Tsui, KL. (eds) Artificial Intelligence, Big Data and Data Science in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-031-07155-3_4

Download citation

Publish with us

Policies and ethics