Skip to main content

X-Ray Absorption Spectroscopy (XAS): XANES and EXAFS

  • Chapter
  • First Online:
Springer Handbook of Advanced Catalyst Characterization

Part of the book series: Springer Handbooks ((SHB))

Abstract

In this chapter, we review recent developments in the application of operando X-ray absorption spectroscopy (XAS) and look forward to how the outcomes of present synchrotron upgrades might extend, enhance, or otherwise affect such studies. We will consider some recent developments in beamline, detector technology, cell designs, and experimental arrangements, which are bringing new capacity to operando XAS studies and extending them into new areas of catalysis. Specific emphasis will be placed on developments in operando XAS as applied to electro-catalysis and photocatalysis, along with the different challenges that they present, and we will, in some cases, also consider methodological developments in related fields. We shall also investigate how operando research is venturing into the spectroscopically rich “soft X-ray” (sub ca. 2 keV) regime. Lastly, we shall consider the rise of laboratory XAS spectrometers and assess their role in making new types of operando study possible and how they may fit into the wider picture of operando XAS resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerrrero-Perez, M.O., Banares, M.: Operando Raman study of alumina-supported Sb–V–O catalyst during propane ammoxidation to acrylonitrile with on-line activity measurement. Chem. Commun., 1292–1293 (2002)

    Google Scholar 

  2. Bunker, G.: Introduction to XAFS: A Practical Guide to X-Ray Absorption Fine Structure Spectroscopy. Cambridge University Press (2010)

    Google Scholar 

  3. van Bokhoven, J.A., Lamberti, C. (eds.): X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications, 1st edn. Wiley (2016)

    Google Scholar 

  4. Evans, J.: X-Ray Absorption Spectroscopy for the Chemical and Materials Sciences. Wiley (2017)

    Google Scholar 

  5. Newton, M.A., Dent, A.J.: Chapter 3. In: Chupas, P.J., Hanson, J., Rodriguez, J.A. (eds.) In-Situ Characterization of Heterogeneous Catalysts, pp. 75–118. Wiley (2013)

    Google Scholar 

  6. Mueller, O., Nachtegaal, M., Just, J., Lutzenkirchen-Hecht, D., Frahm, R.: Quick-EXAFS setup at the SuperXAS beamline for in situ X-ray absorption spectroscopy with 10 ms time resolution. J. Synchrotron Radiat. 23, 260–266 (2016)

    CAS  Google Scholar 

  7. Stotzel, J., Lutzenkirchen-Hecht, D., Fonda, E., De Oliveira, N., Briois, V., Frahm, R.: Quick scanning monochromator for millisecond in situ and in operando X-ray absorption spectroscopy. Rev. Sci. Instrum. 79, 083107 (2008)

    CAS  Google Scholar 

  8. Labiche, J.-C., Mathon, O., Pascarelli, S., Newton, M.A., Ferre, G.G., Curfs, C., Vaughan, G., Homs, A., Carreiras, D.F.: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis. Rev. Sci. Instrum. 78, 091301 (2007)

    Google Scholar 

  9. Headspith, J., Groves, G., Luke, P.N., Kogimtzis, M., Salvini, G., Thomas, S.L., Farrow, R.C., Evans, J., Rayment, T., Lee, J.S., Goward, W.D., Amman, A., Mathon, O., Diaz-Moreno, S.: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis. In: IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 2421–2428 (2007)

    Google Scholar 

  10. Headspith, J., Salvini, G., Thomas, S.L., Derbyshire, G., Dent, A., Rayment, T., Evans, J., Farrow, R., Anderson, C., Cliche, J., Dobson, B.R.: XSTRIP-a silicon microstrip-based X-ray detector for ultra-fast X-ray spectroscopy studies. Nucl. Instrum. Methods Phys. Res., Sect. A. 512, 239–244 (2003)

    CAS  Google Scholar 

  11. Muller, O., Stotzel, J., Lutzenkirchen-Hecht, D., Frahm, R.: Gridded ionization chambers for time resolved X-ray absorption spectroscopy. JPCS. 425, 092010 (2013)

    Google Scholar 

  12. Bressler, C., Chergui, M.: Ultrafast X-ray absorption spectroscopy. Chem. Rev. 104, 1781–1812 (2004)

    CAS  Google Scholar 

  13. Bressler, C., Chergui, M.: Molecular structural dynamics probed by ultrafast X-ray absorption spectroscopy. Annu. Rev. Phys. Chem. 61, 263–282 (2010)

    CAS  Google Scholar 

  14. Chen, L.X., Zhang, X., Shelby, M.L.: Recent advances in ultrafast spectroscopy in the chemical sciences. Chem. Sci. 5, 4136–4152 (2014)

    CAS  Google Scholar 

  15. Kurian, R., Kunnus, K., Wernet, P., Butorin, S.M., Glatzel, P., de Groot, F.M.F.: Intrinsic deviations in fluorescence yield detected x-ray absorption spectroscopy: the case of the transition metal L 2,3-edges. J. Phys. C. 24, 452201 (2012)

    Google Scholar 

  16. Achkar, A.J., Regier, T.Z., Wadati, H., Kim, Y.-J., Zhang, H., Hawthorn, D.G.: Bulk sensitive X-ray absorption spectroscopy free of self-absorption effects. Phys. Rev. B. 83, 081106 (2011)

    Google Scholar 

  17. Frentrup, W., Schroeder, D., Manzke, R.: Correction of self-absorption on XAS measurements in fluorescence mode. J. Phys. IV. 7(C2), 509–510 (1997)

    CAS  Google Scholar 

  18. Bauer, M.: HERFD-XAS and valence to core XES: new tools to push the limits in research with hard X-rays? Phys. Chem. Chem. Phys. 16, 13827–13837 (2014)

    CAS  Google Scholar 

  19. Pollock, C.J., DeBeer, S.: Insights into the geometric and electronic structure of transition metal centers from valence-to-core X-ray emission spectroscopy. Acc. Chem. Res. 48, 2967–2975 (2015)

    CAS  Google Scholar 

  20. Anklamm, L., Schlesiger, C., Malzer, W., Grotzsch, D., Neitzel, M., Kanngiesser, B.: A novel von Hamos spectrometer for efficient X-ray emission spectroscopy in the laboratory. Rev. Sci. Instrum. 85, 053110 (2014)

    Google Scholar 

  21. Seidler, G.T., Mortensen, D.R., Remesnik, A.J., Pacold, J.I., Ball, N.A., Barry, N., Styczinski, M., Hoidn, O.R.: A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements. Rev. Sci. Instrum. 85, 113906–111391 (2014)

    CAS  Google Scholar 

  22. Legall, H., Stiel, H., Schnurer, M., Pagels, M., Kanngiesser, B., Mueller, M., Beckhoff, B., Grigorieva, I., Antonov, A., Arkadiev, V., Bjeoumikhov, A.: An efficient X-ray spectrometer based on thin mosaic crystal films and its application in various fields of X-ray spectroscopy. J. Appl. Crystallogr. 42, 572–579 (2009)

    CAS  Google Scholar 

  23. Schlesiger, C., Anklamm, L., Stiel, H., Malzer, W., Kanngiesser, B.: XAFS spectroscopy by an X-ray tube based spectrometer using a novel type of HOPG mosaic crystal and optimized image processing. J. Anal. At. Spectrom. 30, 1080–1085 (2015)

    CAS  Google Scholar 

  24. Nemeth, Z., Szlachetko, J., Bajnoczi, E.G., Vanko, G.: Laboratory von Hamos X-ray spectroscopy for routine sample characterization. Rev. Sci. Instrum. 87, 103105 (2016)

    Google Scholar 

  25. Mortensen, D.R., Seidler, G.T.: Determination of hexavalent chromium fractions in plastics using laboratory-based, high-resolution X-ray emission spectroscopy. J. Electron Spectrosc. Relat. Phenom. 215, 8–15 (2017)

    CAS  Google Scholar 

  26. Bes, R., Ahopelto, T., Honkanen, A.P., Huotari, S., Leinders, G., Pakarinen, J., Kvashnina, K.: Laboratory-scale X-ray absorption spectroscopy approach for actinide research, experiment at the uranium L3-edge. J. Nucl. Mater. 507, 50–53 (2018)

    CAS  Google Scholar 

  27. Honkanen, A.-P., Ollikkala, S., Ahopelto, T., Kallio, A.-J., Blomberg, M., Huotari, S.: Johann-type laboratory-scale X-ray absorption spectrometer with versatile detection modes, http://arxiv.org/abs/1812.01075

  28. Kutzenkirchen-Hecht, D., Grundmann, S., Frahm, R.: Piezo-QEXAFS with fluorescence detection: fast time-resolved investigations of dilute specimens. J. Synchrotron Radiat. 8, 6–9 (2001)

    Google Scholar 

  29. Pascarelli, S., Neisius, T., De Panfilis, S.: Turbo-XAS: dispersive XAS using sequential acquisition. J. Synchrotron Radiat. 6, 1044–1050 (1999)

    CAS  Google Scholar 

  30. Nagai, Y., Dohmae, K., Ikeda, Y., Takagi, N., Tanabe, T., Hara, N., Guilera, G., Pascarelli, S., Newton, M.A., Kuno, O., Jiang, H.Y., Shinjoh, H., Matsumoto, S.: In situ redispersion of platinum autoexhaust catalysts: an on-line approach to increasing catalyst lifetimes? Angew. Chem. Int. Ed. 47, 9303–9306 (2008)

    CAS  Google Scholar 

  31. Nagai, Y., Dohmae, K., Ikeda, Y., Takagi, N., Hara, N., Tanabe, T., Guilera, G., Pascarelli, S., Newton, M.A., Takahashi, N., Shinjoh, H., Matsumoto, S.: In situ observation of platinum sintering on ceria-based oxide for autoexhaust catalysts using turbo-XAS. Catal. Today. 175, 135–140 (2011)

    Google Scholar 

  32. Błachucki, W., Szlachetko, J., Hoszowska, J., Dousse, J.-C., Kayser, Y., Nachtegaal, M., Sá, J.: High energy resolution off-resonant spectroscopy for X-ray absorption spectra free of self-absorption effects. Phys. Rev. Lett. 112, 173003 (2014)

    Google Scholar 

  33. Błachucki, W., Hoszowska, J., Douse, J.-C., Kayser, Y., Stachura, R., Tyra, K., Wojtaszek, K., Sá, J., Szlachetko, J.: High energy resolution off-resonant spectroscopy: a review. Spectrochim. Acta B. 136, 23–33 (2017)

    Google Scholar 

  34. Szlachetko, J., Ferri, D., Machionni, V., Kambolis, A., Safonova, O.V., Milne, C.J., Kröcher, O., Naachtegaal, M., Sá, J.: Subsecond and in situ chemical speciation of Pt/Al2O3 during oxidation reduction cycles monitored by high-energy resolution off-resonant X-ray spectroscopy. J. Am. Chem. Soc. 135, 19071–19074 (2013)

    CAS  Google Scholar 

  35. Chang, E.M., Marcus, M.A., Fakra, S., El-Naggar, M., Mathies, R.A., Alisviatos, A.P.: Millisecond kinetics of nanocrystal cation exchange using microfluidic X-ray absorption spectroscopy. J. Phys. Chem. A. 111, 12210–12215 (2007)

    Google Scholar 

  36. Clark, A.H., Steiger, P., Bornmann, B., Hitz, S., Frahm, R., Ferri, D., Nachtegaal, M.: Fluorescence-detected quick-scanning X-ray absorption spectroscopy. J. Synchrotron Radiat. 27, 681–688 (2020)

    CAS  Google Scholar 

  37. Broennimann, C., Eikenberry, E.F., Heinrich, B., Horisberger, R., Huelsen, G., Pohl, E., Schmitt, B., Schulze-Briese, C., Suzuki, M., Tomizaki, T., Toyokawa, H., Wagner, A.: The PILATUS 1M detector. J. Synchrotron Radiat. 13, 120–130 (2006)

    CAS  Google Scholar 

  38. Dowsett, M.G., Adriaens, A., Jones, G.K.C., Poolton, N., Fiddy, S., Nikitenko, S.: Optically detected X-ray absorption spectroscopies measurements as a means of monitoring corrosion layers on copper. Anal. Chem. 80, 8717–7724 (2008)

    CAS  Google Scholar 

  39. Dowsett, M., Adriaens, A., Martin, C., Bouchenoire, L.: Real time observation of X-ray induced surface modification using simultaneous XANES and XEOL-XANES. Anal. Chem. 84, 4866–4872 (2012)

    CAS  Google Scholar 

  40. Dowsett, M., Hand, M., Sabbe, P.J., Thompson, P., Adriaens, A.: XEOM 1 – a novel microscopy system for the chemical imaging of heritage metal surfaces. Herit. Sci. 3, 14 (2015)

    Google Scholar 

  41. Li, J., Liu, L., Sham, T.K.: 2D XANES-XEOL spectroscopy studies on morphology dependent phase transformation and corresponding luminescence from hierarchical TiO2 nanostructures. Chem. Mater. 27, 3021–3029 (2015)

    CAS  Google Scholar 

  42. Wang, Z., Guo, X., Sham, T.K.: 2D XANES-XEOL mapping: observation of enhanced band gap emission from ZnO nanowire arrays. Nanoscale. 6, 6531–6536 (2014)

    CAS  Google Scholar 

  43. Grunwaldt, J.-D., Baiker, A.: Axial variation of the oxidation state of Pt-Rh/Al2O3 during partial methane oxidation in a fixed-bed reactor: an in situ X-ray absorption spectroscopy study. Catal. Lett. 99, 5–12 (2005)

    CAS  Google Scholar 

  44. Newton, M.A., Jyoti, B., Dent, A.J., Diaz-Moreno, S., Fiddy, S.G., Evans, J.: Rapid monitoring of the nature and interconversion of supported catalyst phases and of their influence upon performance: CO oxidation to CO2 by gamma-Al2O3 supported Rh catalysts. Chem. Eur. J. 12, 1975–1985 (2006)

    CAS  Google Scholar 

  45. Hannemann, S., Grunwaldt, J.D., Vegten, N., Baiker, A., Boye, P., Schroer, C.G.: Distinct spatial changes of the catalyst structure inside a fixed-bed microreactor during the partial oxidation of methane over Rh/Al2O3. Catal. Today. 126, 54–63 (2007)

    CAS  Google Scholar 

  46. Hanneman, S., Grunwaldt, J.D., Kimmerle, B., Baiker, A., Boye, P., Schroer, C.: Axial changes of catalyst structure and temperature in a fixed-bed microreactor during noble metal catalysed partial oxidation of methane. Top. Catal. 52, 1360–1370 (2009)

    Google Scholar 

  47. Grunwaldt, J.D., Beier, M., Kimmerle, B., Bauker, A., Nachtegaal, M., Griesbock, B., Lützenkirchen-Hecht, D., Stötzel, J., Frahm, R.: Structural changes of noble metal catalysts during ignition and extinction of the partial oxidation of methane studied by advanced QEXAFS techniques. Phys. Chem. Chem. Phys. 11, 8779–8789 (2009)

    CAS  Google Scholar 

  48. Brazier, J.B., Nguyen, B.N., Adrio, L.A., Barreiro, E.M., Leong, W.P., Newton, M.A., Figueroa, S.J.A., Hellgardt, K., Hii, K.K.: Catalysis in flow: Operando study of Pd catalyst speciation and leaching. Catal. Today. 229, 95–103 (2014)

    CAS  Google Scholar 

  49. Newton, M.A., Brazier, J.B., Barreiro, E.M., Nguyen, B.N., Parry, S., Emerich, H., Adrio, L.A., Hellgardt, K., Hii, K.K.: Operando XAFS of supported Pd nanoparticles in flowing ethanol/water mixtures: implications for greener catalysis. Green Chem. 18, 406–441 (2016)

    CAS  Google Scholar 

  50. Newton, M.A., Brazier, J.B., Barreiro, E.M., Emerich, H., Adrio, L.A., Mulligan, C.J., Hellgardt, K., Hii, K.K.: Restructuring of supported Pd by green solvents: an operando quick EXAFS (QEXAFS) study. Catal. Sci. Technol. 6, 8525–8531 (2016)

    CAS  Google Scholar 

  51. Newton, M.A., Ferri, D., Mulligan, C.J., Alxneit, I., Emerich, H., Thompson, P.B.J., Hii, K.K.: In situ study of metal leaching from Pd/Al2O3 induced by K2CO3. Catal. Sci. Technol. 10, 466–474 (2020)

    CAS  Google Scholar 

  52. Checchia, S., Mulligan, C.J., Emerich, H., Alxneit, I., Krumeich, F., Di Michiel, M., Thompson, P.B.J., Hii, K.K., Ferri, D., Newton, M.A.: Pd-LaFeO3 catalysts in aqueous ethanol: Pd reduction, leaching, and structural transformations in the presence of a base. ACS Catal. 10, 3933–3944 (2020)

    CAS  Google Scholar 

  53. Newton, M.A., Checchia, S., Knorpp, A.J., Stoian, D., van Beek, W., Emerich, H., Longo, A., van Bokhoven, J.A.: On isothermality in some commonly used plug flow reactors for X-ray based investigations of catalysts. Catal. Sci. Technol. 9, 3081–3089 (2019)

    CAS  Google Scholar 

  54. McCaulley, J.A.: In-situ X-ray absorption spectroscopy studies of hydride and carbide formation in supported palladium catalysts. J. Phys. Chem. 97, 10372–10379 (1993)

    CAS  Google Scholar 

  55. Rose, A., South, O., Harvey, I., Diaz-Moreno, S., Owen, J.R., Russell, A.E.: In situ time resolved studies of hydride and deuteride formation in Pd/C electrodes via energy dispersive X-ray absorption spectroscopy. Phys. Chem. Chem. Phys. 7, 366–372 (2005)

    CAS  Google Scholar 

  56. Rose, A., Maniguet, S., Mathew, R.J., Slater, C., Yao, J., Russell, A.E.: Hydride phase formation in carbon supported palladium nanoparticle electrodes investigated using in situ EXAFS and XRD. Phys. Chem. Chem. Phys. 5, 3220–3225 (2003)

    CAS  Google Scholar 

  57. Alfonis, K., Colberg, J., Dunn, P.J., Fevig, T., Jennings, S., Johnson, T.A., Kleine, H.P., Knight, C., Nagy, M.A., Perry, D.A., Stefaniak, M.: Green chemistry tools to influence a medicinal chemistry and research chemistry based organization. Green Chem. 10, 31–36 (2008)

    Google Scholar 

  58. Dunn, P.J.: The importance of green chemistry in process research and development. Chem. Soc. Rev. 41, 1452–1461 (2012)

    CAS  Google Scholar 

  59. Prat, D., Hayler, J., Wells, A.: CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 18, 288–296 (2016)

    Google Scholar 

  60. Pachon, L.D., Rothenburg, G.: Tansition-metal nanoparticles: synthesis, stability, and the leaching issue. Appl. Organomet. Chem. 22, 288–299 (2008)

    Google Scholar 

  61. Cantillo, D., Kappe, O.C.: Immobilized transition metal catalysts for cross-couplings in a continuous flow – a critical assessment of the reaction mechanism and metal leaching. ChemCatChem. 6, 3286–3305 (2014)

    CAS  Google Scholar 

  62. Reimann, S., Stotzel, J., Frahm, R., Kleist, W., Grunwaldt, J.D., Baiker, A.: Identification of the active species generated from supported Pd catalysts in Heck reactions: an in situ quick scanning EXAFS investigation. J. Am. Chem. Soc. 133, 3921–3930 (2011)

    CAS  Google Scholar 

  63. Selinsek, M., Benedikt, J., Doronkin, D.E., Sheppard, T.L., Grunwaldt, J.-D., Dittmayer, R.: Revealing the structure and mechanism of palladium during direct synthesis of hydrogen peroxide in continuous flow using operando spectroscopy. ACS Catal. 8, 2456–2557 (2018)

    Google Scholar 

  64. Doronkin, D.E., Wang, S., Sharapa, D., Deschner, B., Sheppard, T., Zimina, A., Studt, F., Dittmeyer, R., Behrens, S., Grunwaldt, J.D.: Dynamic structural changes of supported Pd, PdSn, and PdIn nanoparticles during continuous flow high pressure direct H2O2 synthesis. Catal. Sci. Technol. 10, 4746–4742 (2020)

    Google Scholar 

  65. Martin, D.J., Decarolis, D., Tucoulou, R., Martínez-Criado, G., Beale, A.M.: Towards the interrogation of the behaviour of a single nanoparticle under realistic catalytic reaction conditions. Catal. Struct. React. 3, 63–70 (2017)

    CAS  Google Scholar 

  66. Ouvrard, G., Zerrouki, M., Soudan, P., Lestriez, B., Masquelier, C., Morcrette, M., Hamelet, S., Belin, S., Flank, A.M., Baudelet, F.: Heterogeneous behavior of the lithium battery composite. J. Power Sources. 229, 16–21 (2013)

    CAS  Google Scholar 

  67. Sanchez, D.F., Simionovici, A.S., Lemelle, L., Cuatero, V., Mathon, O., Pascarelli, S., Bonnin, A., Shapiro, K., Konhauser, K., Grolimund, D., Bleuet, P.: Microanalysis by energy dispersive X-ray absorption spectroscopy tomography. Sci. Rep. 7, 16453 (2017)

    Google Scholar 

  68. Ihli, J., Sanchez, D.F., Jacob, R.R., Cuatero, V., Mathon, O., Krumreich, F., Borca, C., Huthwelker, T., Cheng, W.-C., Shu, Y., Pascarelli, S., Grolimund, D., Menzel, A., van Bokhoven, J.A.: Localization and speciation of iron impurities within a fluid catalytic cracking catalyst. Angew. Chem. Int. Ed. 56, 14031–14035 (2017)

    CAS  Google Scholar 

  69. Qi, P., Samadi, N., Martinson, M., Ponomerenko, O., Bassey, B., Gomz, A., George, G.N., Pickering, I.J., Chapman, L.D.: Wide field imaging energy dispersive X-ray absorption spectroscopy. Sci. Rep. 9, 17734 (2019)

    Google Scholar 

  70. Grunwaldt, J.D., Kimmerle, B., Baiker, A., Boye, P., Schroer, C.G., Galtzel, P., Borca, C.N., Beckmann, F.: Catalysts at work: from integral to spatially resolved X-ray absorption spectroscopy. Catal. Today. 145, 67–278 (2008)

    Google Scholar 

  71. Hoffman, G., Rochet, A., Baier, S., Casapu, M., Ritter, S., Wilde, F., Orgurreck, M., Beckmann, F., Grunwaldt, J.D.: Ageing effects on exhaust gas catalysts: microscopic changes captured by X-ray tomography. JPCS. 499, 012017 (2014)

    Google Scholar 

  72. Grunwaldt, J.D., Wagner, J.B., Dunin-Borkowski, R.E.: Imaging catalysts at work: a hierarchical approach from the macro- to the meso- and nano-scale. ChemCatChem. 5, 62–80 (2013)

    CAS  Google Scholar 

  73. Portela, R., Perez-Ferreras, S., Serrano-Lotina, A., Bañares, M.A.: Engineering operando methodology: understanding catalysis in time and space. Front. Chem. Sci. Eng. 12, 509–536 (2018)

    Google Scholar 

  74. Gambino, M., Vesely, M., Filez, M., Oord, R., Sanchez, D.F., Grolimund, D., Nesterenko, N., Monoux, D., Maquet, M., Meirer, F., Weckhuysen, B.M.: Nickel poisoning of a cracking catalyst unraveled by single-particle X-ray fluorescence-diffraction-absorption tomography. Angew. Chem. Int. Ed. 59, 3922–3927 (2020)

    CAS  Google Scholar 

  75. Chapter on imaging and tomography in this book

    Google Scholar 

  76. Matras, D., Vamvakeros, A., Jacques, S.D.M., Price, S.W.T., Pritchard, J., Beale, A.M.: Chapter X. In: Springer Handbook of Advanced Catalyst Characterization, this volume Advances in Chemical Tomography, pp. A–B. Springer (2020)

    Google Scholar 

  77. Katayama, M., Sumiwaka, K., Miyhara, R., Yamashige, H., Arai, H., Uchimoto, Y., Ohta, T., Inada, Y., Z.: Ogumi: X-ray absorption fine structure imaging of inhomogeneous electrode reaction in LiFePO4 lithium-ion battery cathode. J. Power Sources. 269, 994–999 (2014)

    CAS  Google Scholar 

  78. Katayama, M., Sumiwaka, K., Hayashi, K., Ozutsumi, K., Ohta, T., Inada, Y.: Development of a two dimensional imaging system of X-ray absorption fine structure. J. Synchrotron Radiat. 19, 717–721 (2012)

    CAS  Google Scholar 

  79. Orikasa, Y., Gogyo, Y., Yamashige, H., Katayama, M., Chen, K.Z., Mori, T., Yamamoto, K., Masese, T., Iadna, Y., Ohta, T., Siroma, Z., Kato, S., Kinoshita, H., Arai, H., Ogumi, Z., Uchimoto, Y.: Ionic conduction in lithium ion battery composite electrode governs cross-sectional reaction distribution. Sci. Rep. 6, 26382 (2016)

    CAS  Google Scholar 

  80. Grunwaldt, J.D., Schroer, C.G.: Hard and soft X-ray microscopy and tomography in catalysis: bridging the different time and length scales. Chem. Soc. Rev. 39, 4741–4753 (2010)

    CAS  Google Scholar 

  81. Jacques, S.D.M., Di Michiel, M., Beale, A.M., Sochi, T., O’Brien, M.G., Espinosa-Alonso, L., Weckhuysen, B.M., Barnes, P.: Dynamic X-ray diffraction computed tomography reveals real-time insight into catalysts active phase evolution. Angew. Chem. Int. Ed. 43, 10148–10152 (2011)

    Google Scholar 

  82. O’Brien, M.G., Jacques, S.D.M., Di Michiel, M., Barnes, P., Weckhuysen, B.M., Beale, A.M.: Active phase evolution in single Ni/Al2O3 methanation catalyst bodies studied in real time using combined μ-XRD-CT and μ-absorption-CT. Chem. Sci. 3, 509–523 (2012)

    Google Scholar 

  83. Jacques, S.D.M., Di Michiel, M., Kimber, S.A.J., Yang, X.H., Cernik, R.J., Beale, A.M., Billinge, S.J.L.: Pair distribution function computed tomography. Nat. Commun. 4, 2536 (2013)

    Google Scholar 

  84. Beale, A.M., Jacques, S.D.M., Gibson, E.K., Di Michiel, M.: Progress towards five dimensional imaging of functional materials under process conditions. Coord. Chem. Rev. 227, 208–223 (2014)

    Google Scholar 

  85. Matsui, H., Ishiguro, N., Uruga, T., Sekizawa, O., Higashi, K., Maejima, N., Tada, M.: Operando 3D visualization of migration and degradation of a platinum cathode catalyst in a polymer electrolyte fuel cell. Angew. Chem. Int. Ed. 56, 9371–9375 (2017)

    CAS  Google Scholar 

  86. Matsui, H., Maejima, N., Ishiguro, N., Tan, Y., Uruga, T., Sekizawa, O., Sakata, T., Tada, M.: Operando XAFS imaging of distribution of Pt cathode catalysts in PEFC MEA. Chem. Rec. 19, 1380–1392 (2019)

    CAS  Google Scholar 

  87. Thibault, P., Dierolf, M., Menze, A., Bunk, O., David, C., Pfeiffer, F.: High-resolution X-ray diffraction microscopy. Science. 321, 379–382 (2008)

    CAS  Google Scholar 

  88. Wise, A.M., Weker, J.N., Kalirai, S., Farmand, M., Shapiro, D.A., Meirer, F., Weckhuysen, B.M.W.: Nanoscale chemical imaging of an individual catalyst particle with soft X-ray ptychography. ACS Catal. 6, 2178–2181 (2016)

    CAS  Google Scholar 

  89. Hirose, M., Ishiguro, M., Shimomura, K., Burdet, N., Matsui, H., Tada, M., Takahashi, Y.: Visualization of heterogeneous oxygen storage behavior in platinum-supported cerium-zirconium oxide three-way catalyst particles by hard X-ray spectro-ptychography. Angew. Chem. Int. Ed. 57, 1474–1479 (2018)

    CAS  Google Scholar 

  90. Tromp, M., Dent, A.J., Headspith, J., Easun, T.L., Sun, X.Z., George, M.W., Mathon, O., Smolentsev, G., Hamilton, M.L., Evans, J.: Energy dispersive XAFS: characterization of electronically excited states of copper(I). J. Phys. Chem. B. 117, 7381–7387 (2013)

    CAS  Google Scholar 

  91. Stickrath, A.B., Mara, M.W., Lockhard, J.V., Harpham, M.R., Huang, J., Zhang, X.Y., Attenkofer, K., Chen, L.X.: Detailed transient heme structures of Mb-CO in solution after CO dissociation: an X-ray transient absorption spectroscopic study. J. Phys. Chem. B. 117, 4705–4712 (2013)

    CAS  Google Scholar 

  92. Smolentsev, G., Syndstrom, V.: Time-resolved X-ray absorption spectroscopy for the study of molecular systems relevant for artificial photosynthesis. Coord. Chem. Rev. 304, 117–132 (2015)

    Google Scholar 

  93. Zhang, X.Y., Canton, S.E., Smolentsev, G., Wallentin, C.J., Liu, Y.Z., Kong, Q.Y., Attenkofer, K., Stickrath, A.B., Mara, M.W., Chen, L.X., Warnmark, K., Sundstrom, V.: Highly accurate excited-state structure of [Os(bpy)(2)dcbpy](2+) determined by X-ray transient absorption spectroscopy. J. Am. Chem. Soc. 136, 8804–8809 (2014)

    CAS  Google Scholar 

  94. Smolentsev, G., Cecconi, B., Guda, A., Chavanot-Kerlidon, M., van Bokhoven, J.A., Nachtegaal, M., Artero, V.: Microsecond X-ray absorption spectroscopy identification of CoI intermediates in cobaloxime catalyzed hydrogen evolution. Chem. Eur. J. 21, 15158–11516 (2015)

    CAS  Google Scholar 

  95. Li, Z.J., Zhan, F., Xiao, H., Zhang, X., Kong, Q.Y., Fan, X.B., Liu, W.-Q., Huang, M.-Y., Huang, C., Gao, Y.-J., Li, X.-B., Meng, Q.-Y., Feng, K., Chen, B., Tung, C.-H., Zhao, H.-F., Tao, Y., Wu, L.-Z.: Tracking Co(I) intermediate in operando in photocatalytic hydrogen evolution by X-ray transient absorption spectroscopy and DFT calculation. J. Phys. Chem. Lett. 7, 5253–5258 (2016)

    CAS  Google Scholar 

  96. Song, F.Y., More, T., Schilling, M., Smolentsev, G., Azzaroli, N., Fox, T., Luber, S., Patzke, G.R.: {Co4O4} and Co, Ni4O4 cubane water oxidation catalysts as surface cut-outs of cobalt oxides. J. Am. Chem. Soc. 139, 14198–14208 (2017)

    CAS  Google Scholar 

  97. Huijser, A., Pan, Q., van Duinen, D., Laursen, M.G., Al Nahhas, A., Chabera, P., Feitag, L., Gonzalez, L., Kong, Q.Y., Zhang, X.Y., Haldrup, K., Browne, W.R., Smolentsev, G., Uhlig, J.: Shedding light on the nature of photo-induced states formed in hydrogen-generating supramolecular RuPt, photocatalysts by ultrafast spectroscopy. J. Phys. Chem. A. 122, 6396–6406 (2018)

    CAS  Google Scholar 

  98. Smolentsev, G., Soldatov, M.A., Probst, B., Bachmann, C., Azzaroli, N., Alberto, R., Nachtegaal, M., van Bokhoven, J.A.: Structure of the CoI intermediate of a cobalt pentapyridyl catalyst for hydrogen evolution revealed by time-resolved X-ray spectroscopy. ChemSusChem. 11, 3087–3091 (2018)

    CAS  Google Scholar 

  99. Siebel, A., Gorlin, Y., Durst, J., Proux, O., Hasché, F., Tromp, M., Gasteiger, H.A.: Identification of catalyst structure during the hydrogen oxidation reaction in an operating PEM fuel cell. ACS Catal. 6, 7326–7334 (2016)

    CAS  Google Scholar 

  100. Siebel, A., Gorlin, Y., Durst, J., Proux, O., Hasché, F., Tromp, M., Gasteiger, H.A.: Surface adsorption affects the performance of alkaline anion-exchange membrane fuel cells. ACS Catal. 6, 7326–7334 (2016)

    CAS  Google Scholar 

  101. Achilli, E., Minguzzi, A., Visibile, A., Locatelli, C., Vertova, A., Naldoni, A., Rondinini, S., Auricchio, F., Marconi, S., Fracchia, M., Ghigna, P.: 3D-printed photo-spectro-electrochemical devices for in situ and in operando X-ray absorption spectroscopy investigation. J. Synchrotron Radiat. 23, 622–628 (2016)

    Google Scholar 

  102. Binninger, T., Fabbri, E., Patru, A., Garganourakis, M., Han, J., Abbott, D.F., Sereda, O., Koetz, R., Menzel, A., Nachtegaal, M., Schmidt, T.J.: Electrochemical flow-cell setup for in situ X-ray investigations I. Cell for SAXS and XAS at synchrotron facilities. J. Electrochem. Soc. 163, H906–H912 (2016)

    CAS  Google Scholar 

  103. Baran, T., Wojtyla, S., Lenardi, C., Vertova, A., Ghigna, P., Achilli, E., Fracchia, M., Rondanini, S., Minguzzi, A.: An efficient CuxO photocathode for hydrogen production at neutral pH: new insights from combined spectroscopy and electrochemistry. Appl. Mater. Interfaces. 8, 21250–21260 (2016)

    CAS  Google Scholar 

  104. Fabbri, E., Nachtegaal, M., Binninger, T., Cheng, X., Kim, B.-J., Durst, J., Bozza, F., Graule, T., Schäublin, R., Wiles, L., Pertoso, M., Danilovic, N., Ayers, K.E., Schmidt, T.J.: Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 16, 925–932 (2017)

    CAS  Google Scholar 

  105. Kim, B.J., Abott, D.F., Cheng, X., Fabbri, E., Nachtegaal, M., Bozza, F., Castelli, I.E., Lebedev, D., Schaublin, R., Coperet, C., Gaule, T., Marzari, N., Schmidt, T.J.: Unravelling thermodynamics, stability, and oxygen evolution activity of strontium ruthenium perovskite oxide. ACS Catal. 7, 3245–3256 (2017)

    CAS  Google Scholar 

  106. Zitolo, A., Ranjbar-Sahraie, N., Mineva, T., Li, J., Jia, Q., Stamatin, S., Harrington, G.F., Lyth, S.M., Krtil, P., Mukerjee, S., Fonda, E., Jaouen, F.: Identification of catalytic sites in cobalt-nitrogen carbon materials for the oxygen reduction reaction. Nat. Commun. 8, 957 (2017)

    Google Scholar 

  107. Povia, M., Herranz, J., Binninger, T., Nachtegaal, M., Diaz, A., Kohlbrecher, J., Abbott, D.F., Kim, B.-J., Schmidt, T.J.: Combining SAXS and XAS to study the operando degradation of carbon-supported Pt-nanoparticle fuel cell catalysts. ACS Catal. 8, 7000–7015 (2018)

    CAS  Google Scholar 

  108. Miller, T.E., Davies, V., Li, J., Ghoshal, S., Stavitski, E., Attenkofer, K., Mukerjee, S., Jia, Q.: Actualizing in situ X-ray absorption spectroscopy characterization of PEMFC-cycled Pt-electrodes. J. Electrochem. Soc. 165, F597–F603 (2018)

    CAS  Google Scholar 

  109. Jeon, H.S., Sinev, I., Scholten, F., Divins, N.J., Zegkinoglou, I., Pielsticker, L., Roldan Cuenya, B.: Operando evolution of the structure and oxidation state of size controlled Zn nanoparticles during CO2 electroreduction. J. Am. Chem. Soc. 140, 9383–9386 (2018)

    CAS  Google Scholar 

  110. Enman, L.J., Burke Stevens, M., Dahan, M.H., Nellist, M.R., Toroker, M.C., Boettcher, S.W.: Operando X-ray absorption spectroscopy shows iron oxidation is concurrent with oxygen evolution in cobalt–iron (oxy)hydroxide electrocatalysts. Angew. Chem. Int. Ed. 57, 12840–12844 (2018)

    CAS  Google Scholar 

  111. Müller, R.J., Lan, J., Lienau, K., Moré, R., Triana, C.A., Iannuzzi, M., Patzke, G.R.: Monitoring surface transformations of metal carbodiimide water oxidation catalysts by operando XAS and Raman spectroscopy. Dalton Trans. 47, 10759–10766 (2018)

    Google Scholar 

  112. Fracchia, M., Visibile, A., Ahlberg, E., Vertova, A., Minguzzi, A., Ghigna, P., Rondinini, S.: α- and γ-FeOOH: stability, reversibility, and nature of the active phase under hydrogen evolution. ACS Appl. Energy Mater. 1, 1716–1725 (2018)

    CAS  Google Scholar 

  113. Cavillo, L., Carraro, F., Vozniuk, O., Celorrio, V., Nodari, L., Russell, A.E., Debellis, D., Fermin, D., Cavani, F., Agnoli, S., Yang, G.H.B., Hung, S.-F., Liu, S., Yuan, K., Miao, S., Zhang, L., Huang, X., Wang, H.-Y., Cai, W., Chen, R., Gao, J., Yang, X., Chen, W., Huang, Y., Chen, H.M., Li, C.M., Zhang, T., Liu, B.: Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy. 3, 140–147 (2018)

    Google Scholar 

  114. Yang, H.B., Hung, S.-F., Liu, S., Yuan, K., Miao, S., Zhang, L., Huang, X., Wang, H.-Y., Cai, W., Chen, R., Gao, J., Yang, X., Chen, W., Huang, Y., Chen, H.M., Li, C.M., Zhang, T., Liu, B.: Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy. 3, 140–147 (2018)

    CAS  Google Scholar 

  115. Song, S., Zhou, J., Su, X., Wang, Y., Li, J., Zhang, L., Xiao, G., Guan, C., Liu, R., Chen, S., Lin, H.-J., Zhang, S., Wang, J.-Q.: Operando X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy Environ. Sci. 11, 2945–2953 (2018)

    CAS  Google Scholar 

  116. Handoko, A.D., Wei, F., Jenndy, Yeo, B.S., Seh, Z.W.: Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1, 922–924 (2018)

    CAS  Google Scholar 

  117. Weng, Z., Wu, Y., Wang, M., Jiang, J., Yang, K., Huo, S., Wang, X.-F., Ma, Q., Brudvig, G.W., Batista, V.S., Liang, Y., Feng, Z., Wang, H.: Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 9, 415 (2018)

    Google Scholar 

  118. Kornienko, N., Heidary, N., Cibin, G., Reisner, E.: Catalysis by design: development of a bifunctional water splitting catalyst through an operando measurement directed optimization cycle. Chem. Sci. 9, 5322–5333 (2018)

    CAS  Google Scholar 

  119. Yang, X., Nash, J., Anibal, J., Dunwell, M., Kattel, S., Stavitski, E., Attenkofer, K., Chen, J.G., Yan, Y., Xu, B.: Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles. J. Am. Chem. Soc. 140, 13387–13391 (2018)

    CAS  Google Scholar 

  120. Fracchia, M., Cristino, V., Vertova, A., Rondininic, S., Caramori, S., Ghigna, P., Minguzzi, A.: Operando X-ray absorption spectroscopy of WO3 photoanodes. Electrochim. Acta. 320, 134561 (2019)

    CAS  Google Scholar 

  121. Kim, B.-J., Fabbri, E., Abbott, D.F., Cheng, X., Clark, A.H., Nachtegaal, M., Borlaf, M., Castelli, I.E., Graule, T., Schmidt, T.J.: Functional role of Fe-doping in Co-based perovskite oxide catalysts for oxygen evolution reaction. J. Am. Chem. Soc. 141, 5231–5240 (2019)

    CAS  Google Scholar 

  122. Al Samarai, M., Hahn, A.W., Askari, A.B., Cui, Y.-T., Yamazoe, K., Miyawaki, J., Harada, Y., Rüdiger, O., DeBeer, S.: Elucidation of structure−activity correlations in a nickel manganese oxide oxygen evolution reaction catalyst by operando Ni L-edge X-ray absorption spectroscopy and 2p3d resonant inelastic X-ray scattering. ACS Appl. Mater. Interfaces. 11, 38595–38605 (2019)

    Google Scholar 

  123. Cao, L., Luo, Q., Liu, W., Lin, Y., Liu, X., Cao, Y., Zhang, W., Wu, Y., Yang, J., Yao, T., Wei, S.: Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2, 134–141 (2019)

    CAS  Google Scholar 

  124. Zhu, Y., Chen, H.-C., Hsu, C.-S., Lin, T.-S., Chang, C.-J., Chang, S.-C., Tsai, L.-D., Ming Chen, H.: Operando unraveling of the structural and chemical stability of P-substituted CoSe2 electrocatalysts toward hydrogen and oxygen evolution reactions in alkaline electrolyte. ACS Energy Lett. 4, 987–994 (2019)

    CAS  Google Scholar 

  125. Fracchia, M., Ghigna, P., Pozzi, T., Tamburini, U.A., Colombo, V., Braglia, L.: Stabilization by configurational entropy of the Cu(II) active site during CO oxidation on Mg0.2CO0.2,Ni0.2Cu0.2Zn0.2. J. Phys. Chem. Lett. 11, 3589–3593 (2020)

    CAS  Google Scholar 

  126. Braglia, L., Fracchia, M., Ghigna, P., Minguzzi, A., Meroni, D., Edla, R., Vandichel, M., Ahlberg, E., Cerrato, G., Torelli, P.: Understanding solid gas reaction mechanisms by operando soft X-ray absorption spectroscopy at ambient pressure. J. Phys. Chem. C. 124, 14202–14212 (2020)

    CAS  Google Scholar 

  127. Varsha, M.V., Nageswaran, G.: Operando X-ray techniques: a focus on hydrogen and oxygen evolution reactions. Front. Chem. 8, 23 (2020)

    CAS  Google Scholar 

  128. Carbonio, E.A., Velasco-Velez, J.J., Schlögl, R., Knop-Gericke, A.: Perspective-outlook on operando photoelectron and absorption spectroscopy to probe catalysts at the solid-liquid electrochemical interface. J. Electrochem. Soc. 167, 054509 (2020)

    CAS  Google Scholar 

  129. Qi, J., Lin, Y.P., Chen, D.D., Zhou, T.H., Zhang, W., Cao, R.: Autologous cobalt phosphates with modulated coordination sites for electrocatalytic water oxidation. Angew. Chem. Int. Ed. 259, 8917–8921 (2020)

    Google Scholar 

  130. Suntivich, J., May, K.J., Gasteiger, H.A., Goodenough, J.B., Horn, Y.: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science. 334, 1383–1385 (2011)

    CAS  Google Scholar 

  131. Hedenstedt, K., Gomes, A.S.O., Busch, M., Ahlberg, E.: Study of hypochlorite reduction related to the sodium chlorate process. Electrocatalysis. 7, 326–335 (2016)

    CAS  Google Scholar 

  132. Stratmann, M., Hoffmann, K.: In situ Mossbauer spectroscopic study of reactions within rust layers. Corros. Sci. 29, 1329–1352 (1989)

    CAS  Google Scholar 

  133. Monnier, J., Réguer, S., Foy, E., Testemale, D., Mirambet, F., Saheb, M., Dillmann, P., Guillot, I.: XAS and XRD in situ characterisation of reduction and re-oxidation processes of iron corrosion products involved in atmospheric corrosion. Corros. Sci. 78, 293–303 (2014)

    CAS  Google Scholar 

  134. Hedenstedt, K., Bäckström, J., Ahlberg, E.: In-situ Raman spectroscopy of α- and γ-FeOOH during cathodic load. J. Electrochem. Soc. 164, H621–H627 (2017)

    CAS  Google Scholar 

  135. Niwa, H., Kiuchi, H., Miyawaki, I., Harada, Y., Oshima, M., Nabae, Y., Aoki, T.: Operando soft X-ray emission spectroscopy of iron phthalocyanine-based oxygen reduction catalysts. Electrochem. Commun. 35, 57–60 (2013)

    CAS  Google Scholar 

  136. Nagasaka, M., Yuzawa, H., Horigome, T., Kosugi, N.: In operando observation system for electrochemical reaction by soft X-ray absorption spectroscopy with potential modulation method. Rev. Sci. Instrum. 85, 104105 (2014)

    Google Scholar 

  137. Nagasaka, M., Yuzawa, H.: Development and application of in situ/operando soft X-ray transmission cells to aqueous solutions and catalytic electrochemical reactions. J. Elecron. Spectrosc. Relat. Phenom. 200, 293–310 (2015)

    CAS  Google Scholar 

  138. Toyoshima, R., Kondoh, H.: In-situ observations of catalytic surface reactions with soft X-rays under working conditions. J. Phys. C. 27, 083003 (2015)

    CAS  Google Scholar 

  139. Nguyen, L., Tao, F.: Development of a reaction cell for in-situ/operando studies of a catalyst under a reaction condition and during catalysis. Rev. Sci. Instrum. 87, 064101 (2016)

    Google Scholar 

  140. Schwanke, C., Xi, L., Lange, M.: A soft XAS transmission cell for operando studies. J. Synchrotron Radiat. 23, 1390–1394 (2016)

    CAS  Google Scholar 

  141. Castan-Guerrero, C., Krizmancic, D., Bonanni, V., Edla, R., Deluisa, A., Salvador, F., Rossi, G., Panaccione, G., Torelli, P.: A reaction cell for ambient pressure soft x-ray absorption spectroscopy. Rev. Sci. Instrum. 89, 054191 (2018)

    Google Scholar 

  142. Nakamura, T., Oike, R., Kimura, Y., Tamenori, Y., Kawada, Y., Amezawa, K.: Operando soft X-ray absorption spectroscopic study on a solid oxide fuel cell cathode during electrochemical oxygen reduction. ChemSusChem. 10, 2008–2014 (2017)

    CAS  Google Scholar 

  143. Chang, S.-Y., Kathyola, A., Willneff, E.A., Willis, C.J., Wilson, P., Dowding, P.J., Cibin, G., Kroner, A.B., Shotton, E.J., Schroeder, S.L.M.: A versatile liquid-jet/sessile droplet system for operando studies of reactions in liquid dispersions and solutions by X-ray absorption spectroscopy. React. Chem. Eng. 4, 679–687 (2019)

    CAS  Google Scholar 

  144. Liu, Y.-S., Jeong, S., White, J.L., Feng, X., Cho, E.S., Stavila, V., Allendorf, M.D., Urban, J.J., Guo, J.: In-situ/operando X-ray characterization of metal hydrides. ChemPhysChem. 20, 1261–1271 (2019)

    CAS  Google Scholar 

  145. Masanari, N., Havato, Y., Nobuhiro, K.: Soft X-ray absorption spectroscopy of liquids for understanding chemical processes in solution. Anal. Sci. 36, 95–105 (2020)

    Google Scholar 

  146. Ye, Y.F., Wu, C.H., Zhang, L., Liu, Y.S., Glans-Suzuki, P.A., Guo, J.H.: Using soft X-ray spectroscopy to characterize electro/electrolyte interfaces in-situ and in-operando. J. Electron Spectrosc. Relat. Phenom. 221, 2–9 (2017)

    CAS  Google Scholar 

  147. See, for instance, https://henke.lbl.gov/optical_constants/filter2.html

  148. Moya-Cancino, J.G., Honkanen, A.-P., Van der Eerden, A.M.J., Schaink, H., Folkmertsma, L., Ghiasi, M., Longo, A., De Groot, F.M.F., Meifer, F., Huotari, S., Weckhuysen, B.M.: In situ X-ray absorption near edge structure spectroscopy of a solid catalyst using a laboratory setup. ChemCatChem. 11, 1039–1044 (2019)

    CAS  Google Scholar 

  149. Bartzsch, S., Corde, S., Crosbie, J.C., Day, L., Donzelli, M., Krisch, M., Lerch, M., Pellicioli, P., Smyth, L.M.L., Tehei, T.: Technical advances in X-ray microbeam radiation therapy. Phys. Med. Biol. 65, 02TR01 (2020)

    Google Scholar 

  150. Hertault, A., Manuel, B., Midulla, M., Bordier, C., Desponds, L., Kilani, M.S., Sobocinski, J., Haulon, S.: Minimizing radiation exposure during endovascular procedures: basic knowledge, literature review, and reporting standards. Eur. J. Vasc. Endovasc. Surg. 50, 21–36 (2015)

    CAS  Google Scholar 

  151. Das, I.J., Cheng, C.W., Watts, R.J., Ahnesjo, A., Gibbons, J., Li, X.A., Lowenstein, J., Mitra, R.K., Simon, W.E., Zhu, T.C.: Accelerator beam data commissioning equipment and procedures: report of the TG-106 of the therapy physics committee of the AAPM. Med. Phys. 35, 4186–4215 (2008)

    Google Scholar 

  152. Huda, W., Nickoloff, E.L., Boone, J.M.: Overview of patient dosimetry in diagnostic radiology in the USA fort the past 50 years. Med. Phys. 35, 5713–5728 (2008)

    Google Scholar 

  153. Garman, E.F.: Radiation damage in macromolecular crystallography: what is it and why should we care? Acta Cryst. D66, 339–351 (2010)

    Google Scholar 

  154. Owen, R.L., Rudino-Pinera, E., Garman, E.F.: Experimental determination of the radiation dose limit for cryocooled protein crystals. PNAS. 103, 4912–4917 (2006)

    CAS  Google Scholar 

  155. Holton, J.M.: A beginner’s guide to radiation damage. J. Synchrotron Radiat. 16, 133–142 (2009)

    CAS  Google Scholar 

  156. Paithankar, K.S., Owen, R.L., Garman, E.F.: Absorbed dose calculations for macromolecular crystals: improvements to RADDOSE. J. Synchrotron Radiat. 16, 152–162 (2009)

    CAS  Google Scholar 

  157. Meents, A., Gutmann, S., Wagner, A., Schulze-Briese, C.: Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures. PNAS. 107, 1094–1099 (2010)

    CAS  Google Scholar 

  158. De la Mora, E., Lovett, J.E., Blanford, C.F., Garman, E.F., Valderrama, B., Rudino-Pinera, E.: Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase. Acta Crystallogr. D Biol. Crystallogr. D68, 564–577 (2012)

    Google Scholar 

  159. Serrano-Posada, H., Centeno-Leija, S., Rojas-Trjo, S.P., Rodriguez-Almazan, C., Stojanoff, V., Rudino-Pinera, E.: X-ray-induced catalytic active-site reduction of a multicopper oxidase: structural insights into the proton-relay mechanism and O-2-reduction states. Acta Cryst. D71, 2396–2411 (2015)

    Google Scholar 

  160. Horrell, S., Antonyuk, S.V., Eady, R.R., Hasnain, S.S., Hough, M.A., Strange, R.W.: Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal. IUCrJ. 3, 271–281 (2016)

    CAS  Google Scholar 

  161. Grundahl Frankaer, C., Mossin, S., Stahl, K., Harris, P.: Towards accurate structural characterization of metal centres in protein crystals: the structures of Ni and Cu T6bovine insulin derivatives. Acta Cryst. D70, 110–122 (2014)

    Google Scholar 

  162. George, G.N., Pickering, I.J., Pushie, M.J., Nienaber, K., Hackett, M.J., Ascone, I., Hedman, B., Hodgson, K.O., Aitken, J.B., Levina, A., Glover, C., Lay, P.A.: X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples. J. Synchrotron Radiat. 19, 875–886 (2012)

    CAS  Google Scholar 

  163. Butenko, Y.V., Alves, L., Brieva, A.C., Yang, J., Krishnamurthy, S., Siller, L.: X-ray induced decomposition of gold nitride. Chem. Phys. Lett. 430, 89–92 (2006)

    CAS  Google Scholar 

  164. Mesu, G.J., Beale, A.M., de Groot, F.M.F., Weckhuysen, B.M.: Probing the influence of X-rays on aqueous copper solutions using time-resolved in situ combined video/X-ray absorption near-edge/ultraviolet-visible spectroscopy. J. Phys. Chem. B. 110, 17671–17677 (2006)

    CAS  Google Scholar 

  165. Plech, A., Kotaidis, V., Siems, A., Sztucki, M.: Kinetics of the X-ray induced gold nanoparticle synthesis. Phys. Chem. Chem. Phys. 10, 3888–3894 (2008)

    CAS  Google Scholar 

  166. Chang, S.H., Kim, J., Phatak, C., D’Aquila, K., Kim, S.K., Kim, J., Song, S.J., Hwang, C.S., Eastman, J.A., Freeland, J.W.: X-ray irradiation induced reversible resistance change in Pt/TiO2/Pt cells. ACS Nano. 8, 1584–1589 (2014)

    CAS  Google Scholar 

  167. Jiang, P., Porsgaard, S., Borondics, F., Kober, M., Caballero, A., Bluhm, H., Besenbacher, F., Salmeron, M.: Room-temperature reaction of oxygen with gold: an in situ ambient-pressure X-ray photoelectron spectroscopy investigation. J. Am. Chem. Soc. 132, 2858–2859 (2010)

    CAS  Google Scholar 

  168. Martis, V., Nikitenko, S., Sen, S., Sankar, G., van Beek, W., Flinichuk, Y., Snigireva, I., Bras, W.: Effects of X-rays on crystal nucleation in lithium disilicate. Cryst. Growth Des. 11, 2858–2865 (2011)

    CAS  Google Scholar 

  169. Stanley, H.B., Banerjee, D., van Breeman, L., Ciston, J., Liebscher, C.H., Martis, V., Merino, D.H., Longo, A., Pattison, P., Peters, G.W.M.: X-ray irradiation induced reduction and nanoclustering of lead in borosilicate glass. CrystEngComm. 16, 9331–9339 (2014)

    CAS  Google Scholar 

  170. Feldman, V.I., Zezin, A.A., Abramchuk, S.S., Zezina, E.A.: X-ray induced formation of metal nanoparticles from interpolyelectrolyte complexes with copper and silver ions: the radiation-chemical contrast. J. Phys. Chem. C. 117, 7286–7293 (2013)

    CAS  Google Scholar 

  171. Newton, M.A., Knorpp, A.J., Meyet, J., Stoian, D., Nachtegaal, M., Clark, A.H., Safonova, O.V., Emerich, H., van Beek, W., Sushkevich, V.L., van Bokhoven, J.A.: Unwanted effects of X-rays in surface grafted copper (II) organometallics and copper exchanged zeolites, how they manifest, and what can be done about them? Phys. Chem. Chem. Phys. 22, 6826–6837 (2020)

    CAS  Google Scholar 

  172. Vanelderen, P., Snyder, B.E.R., Tsai, M.-L., Hadt, R.G., Vancauwenbergh, J., Coussens, O., Schoonhedyt, R.A., Sels, B.F., Solomon, E.I.: Spectroscopic definition of the copper active sites in mordenite: selective methane oxidation. J. Am. Chem. Soc. 137, 6383–6392 (2015)

    CAS  Google Scholar 

  173. Clausen, B.S., Steffensen, G., Fabius, B., Villadsen, L., Feidenhansl, R., Topsoe, H.: In-situ cell for combined XRD and online catalyst tests: studies of Cu based water-gas shift and methanol catalysts. J. Catal. 132, 524–535 (1991)

    CAS  Google Scholar 

  174. Chupas, P.J., Chapman, K.W., Kurtz, C., Hanson, J.C., Lee, P.L., Grey, C.P.: A versatile sample environment cell for non ambient X-ray scattering measurements. J. Appl. Crystallogr. 41, 822–824 (2008)

    CAS  Google Scholar 

  175. Grunwaldt, J.D., Caravati, M., Hannemann, S., Baiker, A.: X-ray absorption spectroscopy under reaction conditions: suitability of different reaction cells for combined catalyst characterization and time-resolved study. Phys. Chem. Chem. Phys. 6, 3037–3047 (2004)

    CAS  Google Scholar 

Download references

Acknowledgments

MAN would like to acknowledge Shell Global Solutions for part finding of his present position. He would also like to thank all those with whom he has worked with over the years, both within and without central facilities, from whom he has learned so much.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Newton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Newton, M.A., Zimmermann, P., van Bokhoven, J.A. (2023). X-Ray Absorption Spectroscopy (XAS): XANES and EXAFS. In: Wachs, I.E., Bañares, M.A. (eds) Springer Handbook of Advanced Catalyst Characterization. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-031-07125-6_27

Download citation

Publish with us

Policies and ethics