Skip to main content

Visual System

  • Chapter
  • First Online:
EEG - fMRI
  • 1139 Accesses

Abstract

Combining both EEG and fMRI is still a challenging task. A large number of studies on the feasibility of EEG-fMRI for the visual system have been performed because it is an accessible and well-described system. In this chapter we will discuss studies around signal quality, the different types of EEG-fMRI experiments in the visual system (EEG-informed fMRI, fMRI-informed EEG, etc.), different cognitive and sensory aspects of the visual tasks studied, the link between spontaneous and task-driven neuronal oscillations and the fMRI signal and also studies of neurovascular coupling that have been undertaken in the visual system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu R, Leal A, Figueiredo P (2018) EEG-informed fMRI: a review of data analysis methods. Front Hum Neurosci 12:29

    Article  Google Scholar 

  • Appelbaum LG et al (2006) Cue-invariant networks for figure and background processing in human visual cortex. J Neurosci 26(45):11695–11708

    Article  CAS  Google Scholar 

  • Ardekani BA et al (2002) Functional magnetic resonance imaging of brain activity in the visual oddball task. Brain Res Cogn Brain Res 14(3):347–356

    Article  Google Scholar 

  • Assecondi S, Vanderperren K, Novitskiy N, Ramautar JR, Fias W, Staelens S, Stiers P, Sunaert S, Van Huffel S, Lemahieu I (2010) Effect of the static magnetic field of the MR-scanner on ERPs: evaluation of visual, cognitive and motor potentials. Clin Neurophysiol 121:672–685

    Article  CAS  Google Scholar 

  • Bagshaw AP, Warbrick T (2007) Single trial variability of EEG and fMRI responses to visual stimuli. Neuroimage 38(2):280–292

    Article  Google Scholar 

  • Becker R et al (2005) Visual evoked potentials recovered from fMRI scan periods. Hum Brain Mapp 26(3):221–230

    Article  Google Scholar 

  • Becker R et al (2008) Influence of ongoing alpha rhythm on the visual evoked potential. Neuroimage 39(2):707–716

    Article  Google Scholar 

  • Becker R, Reinacher M, Freyer F, Villringer A, Ritter P (2011) How ongoing neuronal oscillations account for evoked fMRI variability. J Neurosci 31:11016–11027

    Article  CAS  Google Scholar 

  • Benar CG et al (2007) Single-trial analysis of oddball event-related potentials in simultaneous EEG–fMRI. Hum Brain Mapp 28(7):602–613

    Article  Google Scholar 

  • Berger H (1929) Über das Elektrenkephalogram des Menschen. Arch Psychiatr Nervenkr 87:527–570

    Article  Google Scholar 

  • Bianciardi M et al (2004) Combination of BOLD–fMRI and VEP recordings for spin-echo MRI detection of primary magnetic effects caused by neuronal currents. Magn Reson Imaging 22(10):1429–1440

    Article  Google Scholar 

  • Bledowski C et al (2004) Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging study. J Neurosci 24(42):9353–9360

    Article  CAS  Google Scholar 

  • Bonmassar G et al (1999) Visual evoked potential (VEP) measured by simultaneous 64-channel EEG and 3T fMRI. Neuroreport 10(9):1893–1897

    Article  CAS  Google Scholar 

  • Bonmassar G et al (2001) Spatiotemporal brain imaging of visual-evoked activity using interleaved EEG and fMRI recordings. Neuroimage 13(6 Pt 1):1035–1043

    Article  CAS  Google Scholar 

  • Brookes MJ, Gibson AM, Hall SD, Furlong PL, Barnes GR, Hillebrand A, Singh KD, Holliday IE, Francis ST, Morris PG (2005) GLM-beamformer method demonstrates stationary field, alpha ERD and gamma ERS co-localisation with fMRI BOLD response in visual cortex. Neuroimage 26:302–308

    Article  Google Scholar 

  • Brookes MJ, Mullinger KJ, Stevenson CM, Morris PG, Bowtell R (2008) Simultaneous EEG source localisation and artifact rejection during concurrent fMRI by means of spatial filtering. Neuroimage 40:1090–1104

    Article  Google Scholar 

  • Bunkrad M et al (1989) Visual evoked cortical potentials modified by a NMR magnetic field of 0.24 tesla. Fortschr Ophthalmol 86(6):702–705

    CAS  Google Scholar 

  • Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396

    Article  CAS  Google Scholar 

  • Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626–1628

    Article  CAS  Google Scholar 

  • Comi E et al (2005) Visual evoked potentials may be recorded simultaneously with fMRI scanning: a validation study. Hum Brain Mapp 24(4):291–298

    Article  Google Scholar 

  • Croize AC et al (2004) Dynamics of parietofrontal networks underlying visuospatial short-term memory encoding. Neuroimage 23(3):787–799

    Article  CAS  Google Scholar 

  • Crottaz-Herbette S, Menon V (2006) Where and when the anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence. J Cogn Neurosci 18(5):766–780

    Article  CAS  Google Scholar 

  • de Munck JC et al (2007) The hemodynamic response of the alpha rhythm: an EEG/fMRI study. Neuroimage 35(3):1142–1151

    Article  Google Scholar 

  • Debener S et al (2005) Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25(50):11730–11737

    Article  CAS  Google Scholar 

  • Debener S et al (2008) Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength. Int J Psychophysiol 67(3):189–199

    Article  Google Scholar 

  • Di Russo F et al (2002) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15(2):95–111

    Article  Google Scholar 

  • Di Russo F et al (2003) Source analysis of event-related cortical activity during visuo-spatial attention. Cereb Cortex 13(5):486–499

    Article  Google Scholar 

  • Di Russo F et al (2007) Spatiotemporal analysis of the cortical sources of the steady-state visual evoked potential. Hum Brain Mapp 28(4):323–334

    Article  Google Scholar 

  • Eichele T et al (2005) Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI. Proc Natl Acad Sci U S A 102(49):17798–17803

    Article  CAS  Google Scholar 

  • Feige B et al (2005) Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. J Neurophysiol 93(5):2864–2872

    Article  Google Scholar 

  • Fiebach CJ et al (2005) Neuronal mechanisms of repetition priming in occipitotemporal cortex: spatiotemporal evidence from functional magnetic resonance imaging and electroencephalography. J Neurosci 25(13):3414–3422

    Article  CAS  Google Scholar 

  • Foucher JR et al (2003) The BOLD response and the gamma oscillations respond differently than evoked potentials: an interleaved EEG–fMRI study. BMC Neurosci 4:22

    Article  Google Scholar 

  • Gazzaley A et al (2005) Top-down enhancement and suppression of the magnitude and speed of neural activity. J Cogn Neurosci 17(3):507–517

    Article  Google Scholar 

  • Goldman RI et al (2002) Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13(18):2487–2492

    Article  Google Scholar 

  • Goncalves SI et al (2006) Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: inter-subject variability. Neuroimage 30(1):203–213

    Article  CAS  Google Scholar 

  • Green JJ, Boehler CN, Roberts KC, Chen LC, Krebs RM, Song AW, Woldorff MG (2017) Cortical and subcortical coordination of visual spatial attention revealed by simultaneous EEG-fMRI recording. J Neurosci 37:7803–7810

    Article  CAS  Google Scholar 

  • Guy CN et al (1999) fMRI and EEG responses to periodic visual stimulation. Neuroimage 10(2):125–148

    Article  CAS  Google Scholar 

  • Hanslmayr S, Aslan A, Staudigl T, Klimesch W, Herrmann CS, Bauml KH (2007) Prestimulus oscillations predict visual perception performance between and within subjects. Neuroimage 37:1465–1473

    Article  Google Scholar 

  • Hanslmayr S, Volberg G, Wimber M, Dalal SS, Greenlee MW (2013) Prestimulus oscillatory phase at 7 Hz gates cortical information flow and visual perception. Curr Biol 23(22):2273–2278

    Article  CAS  Google Scholar 

  • Heinze HJ et al (1994) Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372(6506):543–546

    Article  CAS  Google Scholar 

  • Helmholtz H (1853) Über einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Ann Phys 165(6):211–233

    Article  Google Scholar 

  • Henning S et al (2005) Simultaneous recordings of visual evoked potentials and BOLD MRI activations in response to visual motion processing. NMR Biomed 18(8):543–552

    Article  Google Scholar 

  • Henning S et al (2006) Task- and EEG-correlated analyses of BOLD MRI responses to eyes opening and closing. Brain Res 1073–1074:359–364

    Article  Google Scholar 

  • Horovitz SG et al (2004) Parametric design and correlational analyses help integrating fMRI and electrophysiological data during face processing. Neuroimage 22(4):1587–1595

    Article  Google Scholar 

  • Huettel SA et al (2004) Linking hemodynamic and electrophysiological measures of brain activity: evidence from functional MRI and intracranial field potentials. Cereb Cortex 14(2):165–173

    Article  Google Scholar 

  • Hunt BAE, Liddle EB, Gascoyne LE, Magazzini L, Routley BC, Singh KD, Morris PG, Brookes MJ, Liddle PF (2019) Attenuated post-movement Beta rebound associated with schizotypal features in healthy people. Schizophr Bull 45:883–891

    Article  Google Scholar 

  • Hunyadi B, Woolrich MW, Quinn AJ, Vidaurre D, De Vos M (2019) A dynamic system of brain networks revealed by fast transient EEG fluctuations and their fMRI correlates. Neuroimage 185:72–82

    Article  CAS  Google Scholar 

  • Im CH et al (2006) Functional cortical source imaging from simultaneously recorded ERP and fMRI. J Neurosci Methods 157(1):118–123

    Article  Google Scholar 

  • Janz C et al (2001) Coupling of neural activity and BOLD fMRI response: new insights by combination of fMRI and VEP experiments in transition from single events to continuous stimulation. Magn Reson Med 46(3):482–486

    Article  CAS  Google Scholar 

  • Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4:186

    Article  Google Scholar 

  • Knyazeva MG et al (2006a) Imaging of a synchronous neuronal assembly in the human visual brain. Neuroimage 29(2):593–604

    Article  Google Scholar 

  • Knyazeva MG et al (2006b) Interhemispheric integration at different spatial scales: the evidence from EEG coherence and FMRI. J Neurophysiol 96(1):259–275

    Article  Google Scholar 

  • Konn D et al (2004) Initial attempts at directly detecting alpha wave activity in the brain using MRI. Magn Reson Imaging 22(10):1413–1427

    Article  Google Scholar 

  • Kruggel F et al (2000) Recording of the event-related potentials during functional MRI at 3.0 tesla field strength. Magn Reson Med 44(2):277–282

    Article  CAS  Google Scholar 

  • Laufs H et al (2003a) EEG-correlated fMRI of human alpha activity. Neuroimage 19(4):1463–1476

    Article  CAS  Google Scholar 

  • Laufs H et al (2003b) Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci U S A 100(19):11053–11058

    Article  CAS  Google Scholar 

  • Laufs H et al (2006) Where the BOLD signal goes when alpha EEG leaves. Neuroimage 31(4):1408–1418

    Article  CAS  Google Scholar 

  • Lazeyras F et al (2001) Functional MRI with simultaneous EEG recording: feasibility and application to motor and visual activation. J Magn Reson Imaging 13(6):943–948

    Article  CAS  Google Scholar 

  • Linden DE et al (1999) The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. Cereb Cortex 9(8):815–823

    Article  CAS  Google Scholar 

  • Linkenkaer-Hansen K, Nikulin VV, Palva S, Ilmoniemi RJ, Palva JM (2004) Prestimulus oscillations enhance psychophysical performance in humans. J Neurosci 24:10186–10190

    Article  CAS  Google Scholar 

  • Liu Z, Rios C, Zhang N, Yang L, Chen W, He B (2010) Linear and nonlinear relationships between visual stimuli, EEG and BOLD fMRI signals. Neuroimage 50:1054–1066

    Article  Google Scholar 

  • Liu Y, Bengson J, Huang H, Mangun GR, Ding M (2016) Top-down modulation of neural activity in anticipatory visual attention: control mechanisms revealed by simultaneous EEG-fMRI. Cereb Cortex 26:517–529

    Google Scholar 

  • Logothetis NK et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    Article  CAS  Google Scholar 

  • Magri C, Schridde U, Murayama Y, Panzeri S, Logothetis NK (2012) The amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies. J Neurosci 32:1395–1407

    Article  CAS  Google Scholar 

  • Mandelkow H et al (2007) Heart beats brain: the problem of detecting alpha waves by neuronal current imaging in joint EEG-MRI experiments. Neuroimage 37(1):149–163

    Article  CAS  Google Scholar 

  • Mangun GR et al (1998) ERP and fMRI measures of visual spatial selective attention. Hum Brain Mapp 6(5–6):383–389

    Article  CAS  Google Scholar 

  • Mantini D et al (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A 104(32):13170–13175

    Article  CAS  Google Scholar 

  • Martinez A et al (1999) Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci 2(4):364–369

    Article  CAS  Google Scholar 

  • Matsuda T et al (2002) Influence of arousal level for functional magnetic resonance imaging (fMRI) study: simultaneous recording of fMRI and electroencephalogram. Psychiatry Clin Neurosci 56(3):289–290

    Article  Google Scholar 

  • Mayhew SD, Bagshaw AP (2017) Dynamic spatiotemporal variability of alpha-BOLD relationships during the resting-state and task-evoked responses. Neuroimage 155:120–137

    Article  CAS  Google Scholar 

  • Mayhew SD, Dirckx SG, Niazy RK, Iannetti G, Wise RG (2010a) EEG signatures of auditory activity correlate with simultaneously recorded fMRI responses in humans. Neuroimage 49:849–864

    Article  Google Scholar 

  • Mayhew SD, Macintosh BJ, Dirckx SG, Iannetti GD, Wise RG (2010b) Coupling of simultaneously acquired electrophysiological and haemodynamic responses during visual stimulation. Magn Reson Imaging 28:1066–1077

    Article  Google Scholar 

  • Mayhew SD, Li S, Kourtzi Z (2012) Learning acts on distinct processes for visual form perception in the human brain. J Neurosci 32:775–786

    Article  CAS  Google Scholar 

  • Mayhew SD, Ostwald D, Porcaro C, Bagshaw AP (2013) Spontaneous EEG alpha oscillation interacts with positive and negative BOLD responses in the visual auditory cortices and default-mode network. Neuroimage 76:362–372

    Article  Google Scholar 

  • Moosmann M et al (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage 20(1):145–158

    Article  Google Scholar 

  • Moosmann M, Eichele T, Nordby H, Hugdahl K, Calhoun VD (2008) Joint independent component analysis for simultaneous EEG-fMRI: principle and simulation. Int J Psychophysiol 67:212–221

    Article  Google Scholar 

  • Muller TJ et al (2005) The neurophysiological time pattern of illusionary visual perceptual transitions: a simultaneous EEG and fMRI study. Int J Psychophysiol 55(3):299–312

    Article  Google Scholar 

  • Mullinger KJ, Mayhew SD, Bagshaw AP, Bowtell R, Francis ST (2013) Poststimulus undershoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus neuronal activity. Proc Natl Acad Sci U S A 110:13636–13641

    Article  CAS  Google Scholar 

  • Mullinger KJ, Mayhew SD, Bagshaw AP, Bowtell R, Francis ST (2014) Evidence that the negative BOLD response is neuronal in origin: a simultaneous EEG-BOLD-CBF study in humans. Neuroimage 94:263–274

    Article  CAS  Google Scholar 

  • Mullinger KJ, Cherukara MT, Buxton RB, Francis ST, Mayhew SD (2017) Post-stimulus fMRI and EEG responses: evidence for a neuronal origin hypothesised to be inhibitory. Neuroimage 157:388–399

    Article  CAS  Google Scholar 

  • Muri RM et al (1998) Recording of electrical brain activity in a magnetic resonance environment: distorting effects of the static magnetic field. Magn Reson Med 39(1):18–22

    Article  CAS  Google Scholar 

  • Muthukumaraswamy SD, Singh KD (2008) Spatiotemporal frequency tuning of BOLD and gamma band MEG responses compared in primary visual cortex. Neuroimage 40:1552–1560

    Article  Google Scholar 

  • Muthukumaraswamy SD, Singh KD (2009) Functional decoupling of BOLD and gamma-band amplitudes in human primary visual cortex. Hum Brain Mapp 30:2000–2007

    Article  Google Scholar 

  • Negishi M et al (2004) Removal of time-varying gradient artifacts from EEG data acquired during continuous fMRI. Clin Neurophysiol 115(9):2181–2192

    Article  Google Scholar 

  • Nguyen VT, Breakspear M, Cunnington R (2014) Fusing concurrent EEG-fMRI with dynamic causal modeling: application to effective connectivity during face perception. Neuroimage 102(Pt 1):60–70

    Article  Google Scholar 

  • Novitskiy N, Ramautar JR, Vanderperren K, De Vos M, Mennes M, Mijovic B, Vanrumste B, Stiers P, Van den Bergh B, Lagae L, Sunaert S, Van Huffel S, Wagemans J (2011) The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task. Neuroimage 54:824–835

    Article  CAS  Google Scholar 

  • Olbrich S, Mulert C, Karch S, Trenner M, Leicht G, Pogarell O, Hegerl U (2009) EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement. Neuroimage 45:319–332

    Article  Google Scholar 

  • Osipova D, Hermes D, Jensen O (2008) Gamma power is phase-locked to posterior alpha activity. PLoS One 3:e3990

    Article  Google Scholar 

  • Ostwald D, Porcaro C, Bagshaw AP (2010) An information theoretic approach to EEG-fMRI integration of visually evoked responses. Neuroimage 49:498–516

    Article  Google Scholar 

  • Otzenberger H, Gounot D, Foucher JR (2005) P300 recordings during event-related fMRI: a feasibility study. Brain Res Cogn Brain Res 23(2–3):306–15. https://doi.org/10.1016/j.cogbrainres.2004.10.017. Epub 2004 Dec 29. PMID: 15820638.

  • Philiastides MG, Sajda P (2007) EEG-informed fMRI reveals spatiotemporal characteristics of perceptual decision making. J Neurosci 27(48):13082–13091

    Article  CAS  Google Scholar 

  • Porcaro C, Ostwald D, Bagshaw AP (2010) Functional source separation improves the quality of single trial visual evoked potentials recorded during concurrent EEG-fMRI. Neuroimage 50:112–123

    Article  Google Scholar 

  • Raichle ME et al (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682

    Article  CAS  Google Scholar 

  • Rauch A, Rainer G, Logothetis NK (2008) The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proc Natl Acad Sci U S A 105:6759–6764

    Article  CAS  Google Scholar 

  • Ritter P et al (2008) Relation between spatially and spectrally confined EEG rhythms and fMRI resting state networks. In: 14th Ann Meet OHBM, Melbourne, Australia, 15–19 June 2008

    Google Scholar 

  • Romei V, Brodbeck V, Michel C, Amedi A, Pascual-Leone A, Thut G (2008) Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cereb Cortex 18:2010–2018

    Article  Google Scholar 

  • Sadaghiani S, Scheeringa R, Lehongre K, Morillon B, Giraud AL, Kleinschmidt A (2010) Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. J Neurosci 30:10243–10250

    Article  CAS  Google Scholar 

  • Sammer G et al (2005) Acquisition of typical EEG waveforms during fMRI: SSVEP, LRP, and frontal theta. Neuroimage 24(4):1012–1024

    Article  Google Scholar 

  • Scheeringa R, Fries P, Petersson K-M, Oostenveld R, Grothe I, Norris DG, Hagoort P, Bastiaansen MCM (2011a) Neuronal dynamics underlying high- and low-frequency EEG oscillations contribute independently to the human BOLD signal. Neuron 69:572–583

    Article  CAS  Google Scholar 

  • Scheeringa R, Mazaheri A, Bojak I, Norris DG, Kleinschmidt A (2011b) Modulation of visually evoked cortical FMRI responses by phase of ongoing occipital alpha oscillations. J Neurosci 31:3813–3820

    Article  CAS  Google Scholar 

  • Schmid MC et al (2006) Simultaneous EEG and fMRI in the macaque monkey at 4.7 tesla. Magn Reson Imaging 24(4):335–342

    Article  Google Scholar 

  • Schoth F et al (2007) Cerebral processing of spontaneous reversals of the rotating Necker cube. Neuroreport 18(13):1335–1338

    Article  Google Scholar 

  • Schroeder CE et al (1991) Striate cortical contribution to the surface-recorded pattern-reversal VEP in the alert monkey. Vision Res 31(7–8):1143–1157

    Article  CAS  Google Scholar 

  • Sehatpour P et al (2006) Spatiotemporal dynamics of human object recognition processing: an integrated high-density electrical mapping and functional imaging study of “closure” processes. Neuroimage 29(2):605–618

    Article  Google Scholar 

  • Shaw JC (2003) More on alpha rhythm characteristics. In: The brain’s alpha rhythms and the mind. Elsevier, Amsterdam, pp 15–32

    Google Scholar 

  • Singh M et al (2003) Correlation between BOLD–fMRI and EEG signal changes in response to visual stimulus frequency in humans. Magn Reson Med 49(1):108–114

    Article  Google Scholar 

  • Sokoliuk R, Mayhew SD, Aquino KM, Wilson R, Brookes MJ, Francis ST, Hanslmayr S, Mullinger KJ (2018) Two spatially distinct posterior alpha sources fulfill different functional roles in attention. J Neurosci 39(36):7183–7194

    Article  Google Scholar 

  • Sotero RC, Trujillo-Barreto NJ (2008) Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism. Neuroimage 39(1):290–309

    Article  Google Scholar 

  • Swettenham JB, Muthukumaraswamy SD, Singh KD (2013) BOLD responses in human primary visual cortex are insensitive to substantial changes in neural activity. Front Hum Neurosci 7:76

    Article  CAS  Google Scholar 

  • Vanderperren K, De Vos M, Ramautar JR, Novitskiy N, Mennes M, Assecondi S, Vanrumste B, Stiers P, Van den Bergh BR, Wagemans J, Lagae L, Sunaert S, Van Huffel S (2010) Removal of BCG artifacts from EEG recordings inside the MR scanner: a comparison of methodological and validation-related aspects. Neuroimage 50:920–934

    Article  Google Scholar 

  • Vanni S et al (2004) Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP source analysis. Neuroimage 21(3):801–817

    Article  CAS  Google Scholar 

  • Viswanathan A, Freeman RD (2007) Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nat Neurosci 10:1308–1312

    Article  CAS  Google Scholar 

  • Walz JM, Goldman RI, Carapezza M, Muraskin J, Brown TR, Sajda P (2014) Simultaneous EEG-fMRI reveals a temporal cascade of task-related and default-mode activations during a simple target detection task. Neuroimage 102(Pt 1):229–239

    Article  Google Scholar 

  • Wan X et al (2006) The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: implications for neurovascular coupling mechanism. Neuroimage 32(2):616–625

    Article  Google Scholar 

  • Warbrick T, Arrubla J, Boers F, Neuner I, Shah NJ (2014) Attention to detail: why considering task demands is essential for single-trial analysis of BOLD correlates of the visual P1 and N1. J Cogn Neurosci 26:529–542

    Article  Google Scholar 

  • Whittingstall K et al (2007) Evaluating the spatial relationship of event-related potential and functional MRI sources in the primary visual cortex. Hum Brain Mapp 28(2):134–142

    Article  Google Scholar 

  • Whittingstall K, Kevin W, Wilson D, Doug W, Schmidt M, Matthias S, Stroink G, Gerhard S (2008) Correspondence of visual evoked potentials with FMRI signals in human visual cortex. Brain Topogr 21:86–92

    Article  Google Scholar 

  • Winawer J, Kay KN, Foster BL, Rauschecker AM, Parvizi J, Wandell BA (2013) Asynchronous broadband signals are the principal source of the BOLD response in human visual cortex. Curr Biol 23:1145–1153

    Article  CAS  Google Scholar 

  • Wu L, Eichele T, Calhoun VD (2010) Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study. Neuroimage 52:1252–1260

    Article  Google Scholar 

  • Yeşilyurt B, Whittingstall K, Uğurbil K, Logothetis NK, Uludağ K (2010) Relationship of the BOLD signal with VEP for ultrashort duration visual stimuli (0.1 to 5 ms) in humans. J Cereb Blood Flow Metab 30:449–458

    Article  Google Scholar 

  • Zhan Z, Xu L, Zuo T, Xie D, Zhang J, Yao L, Wu X (2014) The contribution of different frequency bands of fMRI data to the correlation with EEG alpha rhythm. Brain Res 1543:235–243

    Article  CAS  Google Scholar 

  • Zumer JM, Scheeringa R, Schoffelen JM, Norris DG, Jensen O (2014) Occipital alpha activity during stimulus processing gates the information flow to object-selective cortex. PLoS Biol 12:e1001965

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Becker, R., Mayhew, S., Ritter, P., Villringer, A. (2022). Visual System. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Cham. https://doi.org/10.1007/978-3-031-07121-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07121-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07120-1

  • Online ISBN: 978-3-031-07121-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics