Skip to main content

Matching Multiple Ontologies to Build a Knowledge Graph for Personalized Medicine

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13261))

Abstract

A rich biomedical knowledge graph can support the multi-domain data integration necessary for the application of Artificial Intelligence models in personalised medicine. Constructing such a knowledge graph from already available biomedical ontologies relies on ontology matching, however, current ontology matching systems are geared towards the alignment of pairs of ontologies of the same domain one at a time. This approach, when applied to a multi-domain problem such as personalised medicine in an all vs. all fashion, poses scalability issues while also ignoring the particularities of the multi-domain aspect.

In this work we evaluate a state-of-the-art ontology matching system, AgreementMakerLight, in the task of building a network of 28 integrated ontologies to construct a knowledge graph for Explainable AI in personalised oncology, highlighting its shortcomings. To address them, we have developed a novel holistic ontology alignment strategy building on AgreementMakerLight that clusters ontologies based on their semantic overlap measured by fast matching techniques with a high degree of confidence, and then applies more sophisticated matching techniques within each cluster. We implemented two within cluster alignment strategies, one based on pairwise alignment and another on incremental alignment.

The within-cluster incremental alignment reduced alignment time by 80% when compared with within-cluster pairwise alignment, achieving 88% coverage of its mappings. Compared to an all vs. all pairwise approach, holistic approaches reduce total running time by up to 60%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://katy-project.eu/.

  2. 2.

    https://moex.gitlabpages.inria.fr/alignapi/format.html.

  3. 3.

    We use KG to denote the integrated network of ontologies which constitute the semantic backbone of the full fledged KG.

  4. 4.

    Although the UMLS provides mappings between some of our ontologies, its usage license does not allow public reuse.

  5. 5.

    Experiments were run in a machine with 100Gb of available RAM.

  6. 6.

    https://github.com/liseda-lab/holistic-matching-aml.

  7. 7.

    Individual statistics available in the supplementary materials.

References

  1. Babalou, S., Grygorova, E., König-Ries, B.: \(\cal{C}\)o\(\cal{M}\)erger: a customizable online tool for building a consistent quality-assured merged ontology. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12124, pp. 19–24. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62327-2_4

    Chapter  Google Scholar 

  2. Caldarola, E.G., Rinaldi, A.M.: An approach to ontology integration for ontology reuse. In: 2016 IEEE 17th International Conference on Information Reuse and Integration (IRI), pp. 384–393. IEEE (2016)

    Google Scholar 

  3. Chari, S., Gruen, D.M., Seneviratne, O., McGuinness, D.L.: Directions for explainable knowledge-enabled systems. arXiv preprint arXiv:2003.07523 (2020)

  4. Chari, S., Gruen, D.M., Seneviratne, O., McGuinness, D.L.: Foundations of explainable knowledge-enabled systems. arXiv preprint arXiv:2003.07520 (2020)

  5. Chatterjee, N., Kaushik, N., Gupta, D., Bhatia, R.: Ontology merging: a practical perspective. In: Satapathy, S.C., Joshi, A. (eds.) ICTIS 2017. SIST, vol. 84, pp. 136–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63645-0_15

    Chapter  Google Scholar 

  6. Cruz, I.F., Stroe, C., Palmonari, M.: Interactive user feedback in ontology matching using signature vectors. In: ICDE 2012, pp. 1321–1324. IEEE (2012)

    Google Scholar 

  7. Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38721-0

    Book  MATH  Google Scholar 

  8. Faria, D., Pesquita, C., Mott, I., Martins, C., Couto, F.M., Cruz, I.F.: Tackling the challenges of matching biomedical ontologies. J. Biomed. Semant. 9(1), 1–19 (2018)

    Article  Google Scholar 

  9. Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I.F., Couto, F.M.: The AgreementMakerLight ontology matching system. In: Meersman, R., et al. (eds.) OTM 2013. LNCS, vol. 8185, pp. 527–541. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41030-7_38

    Chapter  Google Scholar 

  10. Ferreira, J.D., Teixeira, D.C., Pesquita, C.: Biomedical ontologies: coverage, access and use. In: Wolkenhauer, O. (ed.) Systems Medicine Integrative, Qualitative and Computational Approaches, pp. 382–395. Academic Press, Elsevier (2020). https://doi.org/10.1016/B978-0-12-801238-3.11664-2, http://www.sciencedirect.com/science/article/pii/B9780128012383116642

  11. Gruetze, T., Böhm, C., Naumann, F.: Holistic and scalable ontology alignment for linked open data. LDOW 937, 1–10 (2012)

    Google Scholar 

  12. Harrow, I., et al.: Matching disease and phenotype ontologies in the ontology alignment evaluation initiative. J. Biomed. Semant. 8(1), 1–13 (2017)

    Article  Google Scholar 

  13. Hertling, S., Paulheim, H.: Order matters: matching multiple knowledge graphs. arXiv preprint arXiv:2111.02239 (2021)

  14. Jiménez-Ruiz, E.: Logmap family participation in the OAEI 2020. In: Proceedings of the 15th International Workshop on Ontology Matching (OM 2020), vol. 2788, pp. 201–203. CEUR-WS (2020)

    Google Scholar 

  15. Köhler, S.: Improving ontologies by automatic reasoning and evaluation of logical definitions. BMC Bioinf. 12, 418 (2011)

    Article  Google Scholar 

  16. Lecue, F.: On the role of knowledge graphs in explainable AI. Semantic Web 11(1), 41–51 (2020)

    Article  Google Scholar 

  17. Lima, B., Faria, D., Couto, F.M., Cruz, I.F., Pesquita, C.: Oaei 2020 results for aml and amlc. (2020)

    Google Scholar 

  18. Megdiche, I., Teste, O., Trojahn, C.: An extensible linear approach for holistic ontology matching. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 393–410. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_24

    Chapter  Google Scholar 

  19. Noy, N.F., Shah, N.H., Whetzel, P.L., et al.: Bioportal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. 37(2), W170–W173 (2009)

    Article  Google Scholar 

  20. Oliveira, D., Pesquita, C.: Improving the interoperability of biomedical ontologies with compound alignments. J. Biomed. Semant. 9(1), 1–13 (2018)

    Article  Google Scholar 

  21. Osman, I., Ben Yahia, S., Diallo, G.: Ontology integration: approaches and challenging issues. Inf. Fusion 71, 38–63 (2021)

    Article  Google Scholar 

  22. Otero-Cerdeira, L., Rodríguez-Martínez, F.J., Gómez-Rodríguez, A.: Ontology matching: a literature review. Expert Syst. Appl. 42(2), 949–971 (2015)

    Article  Google Scholar 

  23. Pesquita, C.: Towards semantic integration for explainable artificial intelligence in the biomedical domain. In: BIOSTEC 2021, vol. 5, pp. 747–753 (2020)

    Google Scholar 

  24. Pesquita, C., Faria, D., Santos, E., Couto, F.M.: To repair or not to repair: reconciling correctness and coherence in ontology reference alignments. In: Ontology Matching (2013)

    Google Scholar 

  25. Pesquita, C., Faria, D., Stroe, C., Santos, E., Cruz, I.F., Couto, F.M.: What’s in a ‘nym’? synonyms in biomedical ontology matching. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 526–541. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3_33

    Chapter  Google Scholar 

  26. Pour, N., Algergawy, A., Amini, R., Faria, D., et al.: Results of the ontology alignment evaluation initiative 2020. In: OM 2020, vol. 2788, pp. 92–138. CEUR-WS (2020)

    Google Scholar 

  27. Rahm, E.: Towards large-scale schema and ontology matching. In: Schema Matching and Mapping, pp. 3–27. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-16518-4_1

  28. Rahm, E.: The case for holistic data integration. In: Pokorný, J., Ivanović, M., Thalheim, B., Šaloun, P. (eds.) ADBIS 2016. LNCS, vol. 9809, pp. 11–27. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44039-2_2

    Chapter  Google Scholar 

  29. Roussille, P., Megdiche, I., Teste, O., Trojahn, C.: Boosting holistic ontology matching: generating graph clique-based relaxed reference alignments for holistic evaluation. In: Faron Zucker, C., Ghidini, C., Napoli, A., Toussaint, Y. (eds.) EKAW 2018. LNCS (LNAI), vol. 11313, pp. 355–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03667-6_23

    Chapter  Google Scholar 

  30. Saleem, K., Bellahsene, Z., Hunt, E.: Porsche: performance oriented schema mediation. Inf. Syst. 33(7–8), 637–657 (2008)

    Article  Google Scholar 

  31. Silva, M.C., Faria, D., Pesquita, C.: Integrating knowledge graphs for explainable artificial intelligence in biomedicine? In: Ontology Matching Workshop at the International Semantic Web Conference (2021)

    Google Scholar 

  32. Stoilos, G., Geleta, D., Shamdasani, J., Khodadadi, M.: A novel approach and practical algorithms for ontology integration. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 458–476. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_27

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by FCT through the LASIGE Research Unit (UIDB/00408/2020 and UIDP/00408/2020). It was also partially supported by the KATY project which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 101017453.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Contreiras Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, M.C., Faria, D., Pesquita, C. (2022). Matching Multiple Ontologies to Build a Knowledge Graph for Personalized Medicine. In: Groth, P., et al. The Semantic Web. ESWC 2022. Lecture Notes in Computer Science, vol 13261. Springer, Cham. https://doi.org/10.1007/978-3-031-06981-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06981-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06980-2

  • Online ISBN: 978-3-031-06981-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics