Skip to main content

Jankov Formulas and Axiomatization Techniques for Intermediate Logics

  • Chapter
  • First Online:

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 24))

Abstract

We discuss some of Jankov’s contributions to the study of intermediate logics, including the development of what have become known as Jankov formulas and a proof that there are continuum many intermediate logics. We also discuss how to generalize Jankov’s technique to develop axiomatization methods for all intermediate logics. These considerations result in what we term subframe and stable canonical formulas. Subframe canonical formulas are obtained by working with the disjunction-free reduct of Heyting algebras and are the algebraic counterpart of Zakharyaschev’s canonical formulas. On the other hand, stable canonical formulas are obtained by working with the implication-free reduct of Heyting algebras and are an alternative to subframe canonical formulas. We explain how to develop the standard and selective filtration methods algebraically to axiomatize intermediate logics by means of these formulas. Special cases of these formulas give rise to the classes of subframe and stable intermediate logics, and the algebraic account of filtration techniques can be used to prove that they all posses the finite model property (fmp). The fmp results about subframe and cofinal subframe logics yield algebraic proofs of the results of Fine and Zakharyaschev. We conclude by discussing the operations of subframization and stabilization of intermediate logics that this approach gives rise to.

In the English literature there are two competing spellings of Jankov’s name: Jankov and Yankov. We follow the former because this is more common usage in the mathematical literature. The latter usage is more common in the philosophical literature, and is commonly used in this volume.

We are very happy to be able to contribute to this volume dedicated to V.  A. Jankov. His work has been very influential for many generations of logicians, initially in the former Soviet Union, but eventually also abroad. In particular, it had a profound impact on our own research. While we have never met Professor Jankov in person, we have heard lots of interesting stories about him from our advisor Leo Esakia. Jankov is not only an outstanding logician, but also a role model citizen, who stood up against the Soviet regime. Because of this, he ended up in the Soviet political camps. A well-known Georgian dissident and human rights activist Levan Berdzenishvili spent several years there with Jankov. We refer to his memoirs (Berdzenishvili 2019) about the Soviet political camps of 1980s in general and about Jankov in particular. One chapter of the book “Vadim” (pp. 127–141) is dedicated to Jankov, in which he is characterized as follows: “I can say with certainty that in our political prison, Vadim Yankov, omnipotent and always ready to help, embodied in the pre-Internet era the combined capabilities of Google, Yahoo, and Wikipedia”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The results of Bezhanishvili and Bezhanishvili (2017) were obtained earlier than those in Bezhanishvili et al. (2016a). However, the latter appeared in print earlier than the former.

  2. 2.

    Again, the results of Bezhanishvili and Bezhanishvili (2017) were obtained earlier but appeared later than those in Bezhanishvili et al. (2016b).

  3. 3.

    While the assumption that A is finite is not essential, it suffices for our purposes.

  4. 4.

    This lemma is closely related to Chang and Keisler (1990, Proposition 2.1.8).

  5. 5.

    In Bezhanishvili and Bezhanishvili (2009, Definition 3.30) these morphisms were called well partial Esakia morphisms.

References

  • Balbes, R., & Dwinger, P. (1974). Distributive lattices. Columbia: University of Missouri Press.

    Google Scholar 

  • Berdzenishvili, L. (2019). Sacred darkness (Europa ed.).

    Google Scholar 

  • Bezhanishvili, G., & Bezhanishvili, N. (2008). Profinite Heyting algebras. Order, 25(3), 211–227.

    Article  MathSciNet  MATH  Google Scholar 

  • Bezhanishvili, G., & Bezhanishvili, N. (2009). An algebraic approach to canonical formulas: Intuitionistic case. Review of Symbolic Logic, 2(3), 517–549.

    Article  MathSciNet  MATH  Google Scholar 

  • Bezhanishvili, G., & Bezhanishvili, N. (2011). An algebraic approach to canonical formulas: Modal case. Studia Logica, 99(1–3), 93–125.

    Article  MathSciNet  MATH  Google Scholar 

  • Bezhanishvili, G., & Bezhanishvili, N. (2012). Canonical formulas for wK4. Review of Symbolic Logic, 5(4), 731–762.

    Article  MathSciNet  MATH  Google Scholar 

  • Bezhanishvili, G., & Bezhanishvili, N. (2016). An algebraic approach to filtrations for superintuitionistic logics. In J. van Eijk, R. Iemhoff, & J. Joosten (Eds.), Liber Amicorum Albert Visser. Tribute series (Vol. 30, pp. 47–56). College Publications.

    Google Scholar 

  • Bezhanishvili, G., & Bezhanishvili, N. (2017). Locally finite reducts of Heyting algebras and canonical formulas. Notre Dame Journal of Formal Logic, 58(1), 21–45.

    Article  MathSciNet  MATH  Google Scholar 

  • Bezhanishvili, G., Bezhanishvili, N., & de Jongh, D. (2008). The Kuznetsov-Gerčiu and Rieger-Nishimura logics. Logic and Logical Philosophy, 17(1–2), 73–110.

    MathSciNet  MATH  Google Scholar 

  • Bezhanishvili, G., Bezhanishvili, N., Gabelaia, D., & Kurz, A. (2010). Bitopological duality for distributive lattices and Heyting algebras. Mathematical Structures in Computer Science, 20(3), 359–393.

    Article  MathSciNet  MATH  Google Scholar 

  • Bezhanishvili, G., Bezhanishvili, N., & Iemhoff, R. (2016a). Stable canonical rules. Journal of Symbolic Logic, 81(1), 284–315.

    Google Scholar 

  • Bezhanishvili, G., Bezhanishvili, N., & Ilin, J. (2016b). Cofinal stable logics. Studia Logica, 104(6), 1287–1317.

    Google Scholar 

  • Bezhanishvili, G., Bezhanishvili, N., & Ilin, J. (2018a). Stable modal logics. Review of Symbolic Logic, 11(3), 436–469.

    Google Scholar 

  • Bezhanishvili, G., Bezhanishvili, N., & Ilin, J. (2019). Subframization and stabilization for superintuitionistic logics. Journal of Logic and Computation, 29(1), 1–35.

    Article  MathSciNet  MATH  Google Scholar 

  • Bezhanishvili, G., Bezhanishvili, N., Moraschini, T., Stronkowski, M. (2021). Profiniteness in varieties of Heyting algebras. Advances in Mathematics, 391, paper 107959, 47 pp.

    Google Scholar 

  • Bezhanishvili, N. (2006). Lattices of intermediate and cylindric modal logics. Ph.D. thesis, ILLC, University of Amsterdam.

    Google Scholar 

  • Bezhanishvili, N., & de Jongh, D. (2018). Stable formulas in intuitionistic logic. Notre Dame Journal of Formal Logic, 59(3), 307–324.

    Article  MathSciNet  MATH  Google Scholar 

  • Bezhanishvili, N., Gabelaia, D., Ghilardi, S., & Jibladze, M. (2016). Admissible bases via stable canonical rules. Studia Logica, 104(2), 317–341.

    Article  MathSciNet  MATH  Google Scholar 

  • Bezhanishvili, N., Galatos, N., & Spada, L. (2017). Canonical formulas for k-potent commutative, integral, residuated lattices. Algebra Universalis, 77(3), 321–343.

    Article  MathSciNet  MATH  Google Scholar 

  • Bezhanishvili, G., & Ghilardi, S. (2007). An algebraic approach to subframe logics. Intuitionistic case. Annals of Pure and Applied Logic, 147(1–2), 84–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Bezhanishvili, G., Ghilardi, S., Jibladze, M. (2011). An algebraic approach to subframe logics. Modal case. Notre Dame Journal of Formal Logic, 52(2), 187–202.

    Google Scholar 

  • Bezhanishvili, G., Harding, J., Ilin, J., & Lauridsen, F. (2018b). MacNeille transferability and stable classes of Heyting algebras. Algebra Universalis, 79(3), Paper No. 55, 21 pp.

    Google Scholar 

  • Bezhanishvili, N., & Moraschini, T. (2019). Hereditarily structurally complete intermediate logics: Citkin’s theorem via Esakia duality. Submitted. https://staff.fnwi.uva.nl/n.bezhanishvili/Papers/IPC-HSC.pdf.

  • Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge: Cambridge University Press.

    Google Scholar 

  • Blok, W. (1978). On the degree of incompleteness of modal logics. Bulletin of the Section of Logic, 7(4), 167–175.

    MathSciNet  MATH  Google Scholar 

  • Blok, W. J., & Pigozzi, D. (1982). On the structure of varieties with equationally definable principal congruences. I. Algebra Universalis, 15(2), 195–227.

    Article  MathSciNet  MATH  Google Scholar 

  • Burris, S., & Sankappanavar, H. (1981). A course in universal algebra. Berlin: Springer.

    Google Scholar 

  • Chagrov, A., & Zakharyaschev, M. (1997). Modal logic. New York: The Clarendon Press.

    Google Scholar 

  • Chang, C. C., & Keisler, H. J. (1990). Model theory (3rd ed.). Amsterdam: North-Holland Publishing Co.

    Google Scholar 

  • Ciabattoni, A., Galatos, N., & Terui, K. (2012). Algebraic proof theory for substructural logics: Cut-elimination and completions. Annals of Pure and Applied Logic, 163(3), 266–290.

    Google Scholar 

  • Citkin, A. (1978). Structurally complete superintuitionistic logics. Soviet Mathematics - Doklady, 19(4), 816–819.

    MATH  Google Scholar 

  • Citkin, A. (1986). Finite axiomatizability of locally tabular superintuitionistic logics. Mathematical Notes, 40(3–4), 739–742.

    Article  MathSciNet  MATH  Google Scholar 

  • Citkin, A. (1987). Structurally complete superintuitionistic logics and primitive varieties of pseudo-Boolean algebras. Matematicheskie Issledovaniya, 98, 134–151 (In Russian).

    Google Scholar 

  • Citkin, A. (2013a). Characteristic formulas of partial Heyting algebras. Logica Universalis, 7(2), 167–193.

    Google Scholar 

  • Citkin, A. (2013b). Jankov-style formulas and refutation systems. Reports on Mathematical Logic, 48, 67–80.

    Google Scholar 

  • Citkin, A. (2015). Characteristic inference rules. Logica Universalis, 9(1), 27–46.

    Article  MathSciNet  MATH  Google Scholar 

  • de Jongh, D. (1968). Investigations on the intuitionistic propositional calculus. Ph.D. thesis, University of Wisconsin.

    Google Scholar 

  • de Jongh, D. H. J., & Troelstra, A. S. (1966). On the connection of partially ordered sets with some pseudo-Boolean algebras. Indagationes Mathematicae, 28, 317–329.

    Article  MathSciNet  MATH  Google Scholar 

  • Diego, A. (1966). Sur les Algèbres de Hilbert. Translated from the Spanish by Luisa Iturrioz. Collection de Logique Mathématique, Sér. A, Fasc. XXI. Gauthier-Villars, Paris.

    Google Scholar 

  • Esakia, L. (1974). Topological Kripke models. Soviet Mathematics - Doklady, 15, 147–151.

    MATH  Google Scholar 

  • Esakia, L. (1979). On the theory of modal and superintuitionistic systems. Logical inference (Moscow, 1974) (pp. 147–172). Moscow: Nauka (In Russian).

    Google Scholar 

  • Esakia, L. (2019). Heyting algebras: Duality theory. In G. Bezhanishvili & W. H. Holliday (Eds.), Trends in logic—Studia Logica library (Vol. 50). Berlin: Springer. Translated from the Russian edition by A. Evseev.

    Google Scholar 

  • Fairtlough, M., & Mendler, M. (1997). Propositional lax logic. Information and Computation, 137(1), 1–33.

    Article  MathSciNet  MATH  Google Scholar 

  • Fine, F. (1974). An ascending chain of S4 logics. Theoria, 40(2), 110–116.

    Google Scholar 

  • Fine, K. (1985). Logics containing K4. II. Journal of Symbolic Logic, 50(3), 619–651.

    Article  MathSciNet  MATH  Google Scholar 

  • Goldblatt, R. I. (1981). Grothendieck topology as geometric modality. Z. Math. Logik Grundlag. Math., 27(6), 495–529.

    Article  MathSciNet  MATH  Google Scholar 

  • Grätzer, G. (1978). General lattice theory. New York: Academic.

    Google Scholar 

  • Hosoi, T. (1967). On intermediate logics. I. Journal of the Faculty of Science, University of Tokyo, Section I, 14, 293–312.

    Google Scholar 

  • Iemhoff, R. (2016). Consequence relations and admissible rules. Journal of Philosophical Logic, 45(3), 327–348.

    Article  MathSciNet  MATH  Google Scholar 

  • Ilin, J. (2018). Filtration revisited: Lattices of stable non-classical logics. Ph.D. thesis, ILLC, University of Amsterdam.

    Google Scholar 

  • Jankov, V. A. (1963). On the relation between deducibility in intuitionistic propositional calculus and finite implicative structures. Doklady Akademii Nauk SSSR, 151, 1293–1294 (In Russian).

    Google Scholar 

  • Jankov, V. A. (1968). The construction of a sequence of strongly independent superintuitionistic propositional calculi. Soviet Mathematics - Doklady, 9, 806–807.

    Google Scholar 

  • Jankov, V. A. (1969). Conjunctively irresolvable formulae in propositional calculi. Izvestiya Akademii Nauk SSSR Series Mathematica, 33, 18–38 (In Russian).

    Google Scholar 

  • Jeřábek, E. (2009). Canonical rules. Journal of Symbolic Logic, 74(4), 1171–1205.

    Article  MathSciNet  MATH  Google Scholar 

  • Jónsson, B. (1968). Algebras whose congruence lattices are distributive. Mathematica Scandinavica, 21, 110–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Kracht, M. (1990). An almost general splitting theorem for modal logic. Studia Logica, 49(4), 455–470.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov, A. V. (1974). On superintuitionistic logics. In Proceedings of the International Congress of Mathematicians (Vol. 1, pp. 243–249). Vancouver.

    Google Scholar 

  • Kuznetsov, A. V., & Gerčiu, V. J. A. (1970). The superintuitionistic logics and finitary approximability. Soviet Mathematics - Doklady, 11, 1614–1619.

    MATH  Google Scholar 

  • Lauridsen, F. (2019). Intermediate logics admitting a structural hypersequent calculus. Studia Logica, 107(2), 247–282.

    Article  MathSciNet  MATH  Google Scholar 

  • Litak, T. (2002). A continuum of incomplete intermediate logics. Reports on Mathematical Logic, 36, 131–141.

    MathSciNet  MATH  Google Scholar 

  • McKay, C. (1968). The decidability of certain intermediate propositional logics. Journal of Symbolic Logic, 33, 258–264.

    Article  MathSciNet  MATH  Google Scholar 

  • McKenzie, R. (1972). Equational bases and nonmodular lattice varieties. Transactions of the American Mathematical Society, 174, 1–43.

    Article  MathSciNet  MATH  Google Scholar 

  • McKinsey, J. C. C. (1941). A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology. Journal of Symbolic Logic, 6, 117–134.

    Article  MathSciNet  MATH  Google Scholar 

  • McKinsey, J. C. C., & Tarski, A. (1944). The algebra of topology. Annals of Mathematics, 45, 141–191.

    Article  MathSciNet  MATH  Google Scholar 

  • McKinsey, J. C. C., & Tarski, A. (1946). On closed elements in closure algebras. Annals of Mathematics, 47, 122–162.

    Article  MathSciNet  MATH  Google Scholar 

  • Priestley, H. A. (1970). Representation of distributive lattices by means of ordered Stone spaces. Bulletin of the London Mathematical Society, 2, 186–190.

    Article  MathSciNet  MATH  Google Scholar 

  • Priestley, H. A. (1972). Ordered topological spaces and the representation of distributive lattices. Proceedings of the London Mathematical Society, 24, 507–530.

    Article  MathSciNet  MATH  Google Scholar 

  • Priestley, H. A. (1975). The construction of spaces dual to pseudocomplemented distributive lattices. Quarterly Journal of Mathematics Oxford Series, 26(102), 215–228.

    Article  MathSciNet  MATH  Google Scholar 

  • Rasiowa, H., & Sikorski, R. (1963). The mathematics of metamathematics. Monografie Matematyczne (Vol. 41). Warsaw: Państwowe Wydawnictwo Naukowe.

    Google Scholar 

  • Rautenberg, W. (1980). Splitting lattices of logics. Archiv für Mathematische Logik und Grundlagenforschung, 20(3–4), 155–159.

    Article  MathSciNet  MATH  Google Scholar 

  • Rybakov, V. (1985). Bases of admissible rules of the logics S4 and Int. Algebra and Logic, 24(1), 55–68.

    Article  MATH  Google Scholar 

  • Rybakov, V. (1995). Hereditarily structurally complete modal logics. Journal of Symbolic Logic, 60(1), 266–288.

    Article  MathSciNet  MATH  Google Scholar 

  • Shehtman, V. (1977). Incomplete propositional logics. Doklady Akademii Nauk SSSR, 235(3), 542–545 (In Russian).

    Google Scholar 

  • Stone, M. H. (1936). The theory of representation for Boolean algebras. Transactions of the American Mathematical Society, 40(1), 37–111.

    MathSciNet  MATH  Google Scholar 

  • Tomaszewski, E. (2003). On sufficiently rich sets of formulas. Ph.D. thesis, Institute of Philosophy, Jagiellonian University, Krakóv.

    Google Scholar 

  • Troelstra, A. (1965). On intermediate propositional logics. Indagationes Mathematicae, 27, 141–152.

    Article  MathSciNet  MATH  Google Scholar 

  • Umezawa, T. (1959). On intermediate propositional logics. Journal of Symbolic Logic, 24, 20–36.

    Article  MathSciNet  MATH  Google Scholar 

  • Visser, A., van Benthem, J., de Jongh, D., Renardel de Lavalette, G. R. (1995). NNIL, a study in intuitionistic propositional logic. Modal logic and process algebra (Amsterdam, 1994) (pp. 289–326). Stanford: CSLI Publications.

    Google Scholar 

  • Wolter, F. (1993). Lattices of modal logics. Ph.D. thesis, Free University of Berlin.

    Google Scholar 

  • Wronski, A. (1973). Intermediate logics and the disjunction property. Reports on Mathematical Logic, 1, 39–51.

    MathSciNet  MATH  Google Scholar 

  • Zakharyaschev, M. (1989). Syntax and semantics of superintuitionistic logics. Algebra and Logic, 28(4), 262–282.

    Article  MathSciNet  MATH  Google Scholar 

  • Zakharyaschev, M. (1992). Canonical formulas for K4. I. Basic results. Journal of Symbolic Logic, 57(4), 1377–1402.

    Article  MathSciNet  MATH  Google Scholar 

  • Zakharyaschev, M. (1996). Canonical formulas for K4. II. Cofinal subframe logics. Journal of Symbolic Logic, 61(2), 421–449.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Bezhanishvili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bezhanishvili, G., Bezhanishvili, N. (2022). Jankov Formulas and Axiomatization Techniques for Intermediate Logics. In: Citkin, A., Vandoulakis, I.M. (eds) V.A. Yankov on Non-Classical Logics, History and Philosophy of Mathematics. Outstanding Contributions to Logic, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-06843-0_4

Download citation

Publish with us

Policies and ethics