Skip to main content

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 24))

  • 251 Accesses

Abstract

I give an exposition of the papers by Yankov published in the 1960s in which he studied positive and some intermediate propositional logics, and where he developed a technique that has successfully been used ever since.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The first part was translated in Heyting (1998).

  2. 2.

    In some translations of the Yankov paper, this term was translated as “implicative structure” (e.g. Jankov 1963a).

References

  • Birkhoff, G. (1948). Lattice theory (Vol. 25, revised ed.). American Mathematical Society Colloquium Publications. New York: American Mathematical Society.

    Google Scholar 

  • Blok, W. (1976). Varieties of interior algebras. Ph.D thesis, University of Amsterdam.

    Google Scholar 

  • Citkin, A. (2013). Characteristic formulas of partial Heyting algebras. Logica Universalis, 7(2), 167–193. https://doi.org/10.1007/s11787-012-0048-7.

  • Fine, K. (1974). An incomplete logic containing \({\rm S}4\). Theoria, 40(1), 23–29.

    Article  MathSciNet  MATH  Google Scholar 

  • Galatos, N., Jipsen, P., Kowalski, T., & Ono, H. (2007). Residuated lattices: An algebraic glimpse at substructural logics, Studies in logic and the foundations of mathematics (Vol. 151). Amsterdam: Elsevier B. V.

    Google Scholar 

  • Gödel, K. (1932). Zum intuitionistischen Aussagekalkül. Anzeiger Wien, 69, 65–66.

    MATH  Google Scholar 

  • Grätzer, G. (2003). General lattice theory. Basel: Birkhäuser.

    Google Scholar 

  • Heyting, A. (1930). Die formalen Regeln der intuitionistischen Logik. I, II, III. Sitzungsber Preuß Akad Wiss, Phys-Math Kl 42–56, 57–71, 158–169.

    Google Scholar 

  • Heyting, A. (1941). Untersuchungen über intuitionistische Algebra. Verhdl. Akad. Wet. Amsterdam, Afd. Natuurk. I., Section, 18, Nr. 2, 36 S.

    Google Scholar 

  • Heyting, A. (1998). The formal rules of intuitionistic logic. In P. Mancocu (Ed.), From Brouwer to Hilbert (pp. 311–327). Oxford University Press.

    Google Scholar 

  • Hosoi, T. (1967). On intermediate logics. I. Journal of the Faculty of Science, University of Tokyo. Section I, 14, 293–312.

    Google Scholar 

  • Hosoi, T., & Ono, H. (1970). The intermediate logics on the second slice. Journal of the Faculty of Science, University of Tokyo: Mathematics. Section IA, 17, 457–461.

    MathSciNet  MATH  Google Scholar 

  • Idziak, K., & Idziak, P. (1988). Decidability problem for finite Heyting algebras. The Journal of Symbolic Logic, 53(3), 729–735. https://doi.org/10.2307/2274568.

  • Jankov, V. A. (1963a). On certain superconstructive propositional calculi. Dokl Akad Nauk SSSR, 151, 796–798. English translation in Soviet Mathematics Doklady, 4, 1103–1105.

    Google Scholar 

  • Jankov, V. A. (1963b). On the realizable formulae of propositional logic. Dokl Akad Nauk SSSR, 151, 1035–1037. English translation in Soviet Mathematics Doklady, 4, 1146–1148.

    Google Scholar 

  • Jankov, V. A. (1963c). On the relation between deducibility in intuitionistic propositional calculus and finite implicative structures. Dokl Akad Nauk SSSR, 151, 1293–1294. English translation in Soviet Mathematics Doklady, 4, 1203–1204.

    Google Scholar 

  • Jankov, V. A. (1968a). Calculus of the weak law of the excluded middle. Izv Akad Nauk SSSR Ser Mat, 32, 1044–1051. English translation in Mathematics of the USSR-Izvestiya, 2(5), 997–1004.

    Google Scholar 

  • Jankov, V. A. (1968b). The construction of a sequence of strongly independent superintuitionistic propositional calculi. Dokl Akad Nauk SSSR, 181, 33–34. English translation in Soviet Mathematics Doklady, 9, 806–807.

    Google Scholar 

  • Jankov, V. A. (1968c). On an extension of the intuitionistic propositional calculus to the classical one and of the minimal one to the intuitionistic one. Izv Akad Nauk SSSR Ser Mat, 32, 208–211. English translation in Mathematics of the USSR-Izvestiya, 2(1), 205–208.

    Google Scholar 

  • Jankov, V. A. (1968d). Three sequences of formulas with two variables in positive propositional logic. Izv Akad Nauk SSSR Ser Mat, 32, 880–883. English translation in Mathematics of the USSR-Izvestiya, 2(4), 845–848.

    Google Scholar 

  • Jankov, V. A. (1969). Conjunctively irresolvable formulae in propositional calculi. Izv Akad Nauk SSSR Ser Mat, 33, 18–38. English translation in Mathematics of the USSR-Izvestiya, 3(1), 17–35.

    Google Scholar 

  • Jaśkowski, S. (1936). Recherches sur le système de la logique intuitioniste. Actual Science Industry, 393, 58–61.

    MATH  Google Scholar 

  • Jaśkowski, S. (1975). Investigations into the system of intuitionist logic. Studia Logica, 34(2), 117–120. Translated from the French by S. McCall (Actes Congr. Internat. Philos. Sci. (Paris, 1935), fasc. no. 6, pp. 58–61, Hermann, Paris, 1936), Stanisław Jaśkowski’s achievements in mathematical logic (Proc. 20th Conf. History of Logic, Cracow, 1974).

    Google Scholar 

  • de Jongh, D. (1968). Investigations on intuitionistic propositional calculus. Ph.D thesis, University of Wisconsin.

    Google Scholar 

  • Kleene, S. C. (1952). Introduction to metamathematics. New York: D. Van Nostrand.

    Google Scholar 

  • Köhler, P. (1981). Brouwerian semilattices. Transactions of the American Mathematical Society, 268(1), 103–126. https://doi.org/10.2307/1998339.

  • Kracht, M. (1999). Tools and techniques in modal logic, Studies in logic and the foundations of mathematics (Vol. 142). Amsterdam: North-Holland Publishing.

    Google Scholar 

  • Kreisel, G., & Putnam, H. (1957). Eine Unableitbarkeitsbeweismethode für den intuitionistischen Aussagenkalkul. Arch Math Logik Grundlagenforsch, 3, 74–78.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov, A. V. (1963). Undecidability of the general problems of completeness, solvability and equivalence for propositional calculi. Algebra i Logika Sem, 2(4), 47–66.

    MathSciNet  Google Scholar 

  • Kuznetsov, A. V. (1971). Some properties of the lattice of varieties of pseudo-Boolean algebras. In: XI All-Union Algebraic Colloquium. Abstracts (pp. 255–256) (in Russian).

    Google Scholar 

  • Kuznetsov, A. V., & Gerčiu, V. J. (1970). The superintuitionistic logics and finite approximability. Dokl Akad Nauk SSSR, 195, 1029–1032. (in Russian).

    MathSciNet  Google Scholar 

  • Łoś, J. (1949). On logical matrices. Trav Soc Sci Lett Wrocław Ser B, 19, 42.

    MathSciNet  Google Scholar 

  • McKinsey, J. C. C. (1941). A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology. The Journal of Symbolic Logic, 6, 117–134.

    Article  MathSciNet  MATH  Google Scholar 

  • Nelson, D. (1947). Recursive functions and intuitionistic number theory. Transactions of the American Mathematical Society, 61, 307–368. https://doi.org/10.2307/1990222.

  • Nishimura, I. (1962). On formulas of one variable in intuitionistic propositional calculus. The Journal of Symbolic Logic, 25, 327–331. https://doi.org/10.2307/2963526.

  • Odintsov, S. P. (2008). Constructive negations and paraconsistency, Trends in logic—studia logica library (Vol. 26). New York: Springer. https://doi.org/10.1007/978-1-4020-6867-6.

  • Plisko, V. (2009). A survey of propositional realizability logic. Bull Symbolic Logic, 15(1), 1–42. https://doi.org/10.2178/bsl/1231081768.

  • Rasiowa, H. (1974). An algebraic approach to non-classical logics, Studies in logic and the foundations of mathematics (Vol. 78). Amsterdam, New York: North-Holland Publishing, American Elsevier Publishing.

    Google Scholar 

  • Rasiowa, H., & Sikorski, R. (1963). The mathematics of metamathematics. Monografie Matematyczne, Tom (Vol. 41). Warsaw: Państwowe Wydawnictwo Naukowe.

    Google Scholar 

  • Rautenberg, W. (1977). The lattice of normal modal logics (Preliminary report). The Bulletin of the Section of Logic, Polish Academy of Sciences, 6, 193–201.

    MathSciNet  MATH  Google Scholar 

  • Rautenberg, W. (1980). Splitting lattices of logics. Arch Math Logik Grundlag, 20(3–4), 155–159. https://doi.org/10.1007/BF02021134.

  • Rieger, L. (1949). On the lattice theory of Brouwerian propositional logic. Acta Fac Nat Univ Carol, Prague, 189, 40.

    Google Scholar 

  • Rieger, L. (1957). A remark on the so-called free closure algebras. Czechoslovak Mathematical Journal, 7(82), 16–20.

    Article  MathSciNet  MATH  Google Scholar 

  • Rose, G. F. (1953). Propositional calculus and realizability. Transactions of the American Mathematical Society, 75, 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  • Tomaszewski, E. (2003). On sufficiently rich sets of formulas. Ph.D thesis, Institute of Philosophy, JagellonianUniversity, Krakov.

    Google Scholar 

  • Troelstra, A. S. (1965). On intermediate propositional logics. Nederl Akad Wetensch Proc Ser A 68=Indag Math, 27, 141–152.

    Google Scholar 

  • Umezawa, T. (1959). On intermediate many-valued logics. The Journal of the Mathematical Society of Japan, 11, 116–128.

    MathSciNet  MATH  Google Scholar 

  • Wajsberg, M. (1931). Untersuchungen über den Aussagenkalkül von A. Heyting. Wiadom Mat, 46, 45–101 (Translated in Wajsberg (1977)).

    Google Scholar 

  • Wajsberg, M. (1977). On A. Heyting’s propositional calculus. In S. Surma (Ed.), Logical works (pp. 132–171), Wydawnictwo Polskiej Akademii Nauk.

    Google Scholar 

  • Wolter, F. (1993). Lattices of modal logics. Ph.D thesis, Freien Universität Berlin.

    Google Scholar 

  • Wroński, A. (1973). Intermediate logics and the disjunction property. Reports on Mathematical Logic, 1, 39–51.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Citkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Citkin, A. (2022). V. Yankov’s Contributions to Propositional Logic. In: Citkin, A., Vandoulakis, I.M. (eds) V.A. Yankov on Non-Classical Logics, History and Philosophy of Mathematics. Outstanding Contributions to Logic, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-06843-0_2

Download citation

Publish with us

Policies and ethics