Skip to main content

Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization

  • Chapter
  • First Online:
Nuclear, Chromosomal, and Genomic Architecture in Biology and Medicine

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 70))

Abstract

The three-dimensional architecture of chromosomes, their arrangement, and dynamics within cell nuclei are still subject of debate. Obviously, the function of genomes—the storage, replication, and transcription of genetic information—has closely coevolved with this architecture and its dynamics, and hence are closely connected. In this work a scale-bridging framework investigates how of the 30 nm chromatin fibre organizes into chromosomes including their arrangement and morphology in the simulation of whole nuclei. Therefore, mainly two different topologies were simulated with corresponding parameter variations and comparing them to experiments: The Multi-Loop-Subcompartment (MLS) model, in which (stable) small loops form (stable) rosettes, connected by chromatin linkers, and the Random-Walk/Giant-Loop (RW/GL) model, in which large loops are attached to a flexible non-protein backbone, were simulated for various loop and linker sizes. The 30 nm chromatin fibre was modelled as a polymer chain with stretching, bending and excluded volume interactions. A spherical boundary potential simulated the confinement to nuclei with different radii. Simulated annealing and Brownian Dynamics methods were applied in a four-step decondensation procedure to generate from metaphase decondensated interphase configurations at thermodynamical equilibrium. Both the MLS and the RW/GL models form chromosome territories, with different morphologies: The MLS rosettes result in distinct subchromosomal domains visible in electron and confocal laser scanning microscopic images. In contrast, the big RW/GL loops lead to a mostly homogeneous chromatin distribution. Even small changes of the model parameters induced significant rearrangements of the chromatin morphology. The low overlap of chromosomes, arms, and subchromosomal domains observed in experiments agrees only with the MLS model. The chromatin density distribution in CLSM image stacks reveals a bimodal behaviour in agreement with recent experiments. Combination of these results with a variety of (spatial distance) measurements favour an MLS like model with loops and linkers of 63 to 126 kbp. The predicted large spaces between the chromatin fibres allow typically sized biological molecules to reach nearly every location in the nucleus by moderately obstructed diffusion and is in disagreement with the much simplified assumption that defined channels between territories for molecular transport as in the Interchromosomal Domain (ICD) hypothesis exist and are necessary for transport. All this is also in agreement with recent selective high-resolution chromosome interaction capture (T2C) experiments, the scaling behaviour of the DNA sequence, the dynamics of the chromatin fibre, the diffusion of molecules, and other measurements. Also all other chromosome topologies can in principle be excluded. In summary, polymer simulations of whole nuclei compared to experimental data not only clearly favour only a stable loop aggregate/rosette like genome architecture whose local topology is tightly connected to the global morphology and dynamics of the cell nucleus and hence can be used for understanding genome organization also in respect to diagnosis and treatment. This is in agreement with and also leads to a general novel framework of genome emergence, function, and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albiez H, Cremer M, Tiberi C, Vecchio L, Schermelleh L, Dittrich S, Kupper K, Joffe B, Thormeyer T, von Hase J, Yang S, Rohr K, Leonhardt H, Solovei I, Cremer C, Fakan S, Cremer T (2006) Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosom Res 14:707–733

    Article  CAS  Google Scholar 

  • Allen MP, Tildesley DJ (1989) Computer simulations of liquids. Oxford University Press, Oxford

    Book  Google Scholar 

  • Antoniou M, Grosveld FG (1990) b-globin dominant control region interacts differently with distal and proximal promoter elements. Genes Dev 4(6):1007–1013

    Article  CAS  PubMed  Google Scholar 

  • Baudy P, Bram S (1978) Chromatin fiber dimensions and nucleosome orientation: a neutron scattering investigation. Nucleic Acids Res 5(10):3697–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baudy P, Bram S (1979) Neutron scattering on nuclei. Nucleic Acids Res 6(4):1721–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumgärtner A, Binder K (1997) Monte Carlo studies on the freely jointed polymer chain with excluded volume interaction. J Chem Phys 71(6):2541–2545

    Article  Google Scholar 

  • Bednar J, Woodcock CL (1999) Cryoelectron microscopic analysis of nucleosomes and chromatin. Methods Enzymol 304:191–213

    Article  CAS  PubMed  Google Scholar 

  • Belmont AS, Bruce K (1994) Visualization of G1 chromosomes: a folded, twisted, supercoiled Chromonema model of interphase chromatid structure. J Cell Biol 127(2):287–302

    Article  CAS  PubMed  Google Scholar 

  • Benyajati C, Worcel A (1976) Isolation, characterization and strucutre of the folded interphase genome of Drosophilia melangoster. Cell 9(3):393–407

    Article  CAS  PubMed  Google Scholar 

  • Benyajati C, Spoerel N, Haymerle H, Ashburner M (1983) The messenger RNA for alcohol dehydrogenase in Drosophila melanogaster differs in its 5′ end in different developmental stages. Cell 33(1):125–133

    Article  CAS  PubMed  Google Scholar 

  • Berezney R, Mortillaro MJ, Ma H, Wei X, Samarabandu J (1995) The nuclear matrix: a structural milieu for genomic function. Int Rev Cytol 162A:1–65

    CAS  PubMed  Google Scholar 

  • Berezney R, Malyavantham KS, Pliss A, Bhattacharya S, Acharya R (2005) Spatio-temporal dynamics of genomic organization and function in the mammalian cell nucleus. Adv Enzym Regul 45:17–26

    Article  CAS  Google Scholar 

  • Berger JM (1998) Structure of DNA topoisomerases. Biochim Biophys Acta 1400(1–3):3–18

    Article  CAS  PubMed  Google Scholar 

  • Bestvater F, Knoch TA, Langowski J, Spiess E (2002) GFP-walking: artificial construct conversions caused by simultaneous cotransfection. BioTechniques 32(4):844–854

    CAS  PubMed  Google Scholar 

  • Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Muller S, Eils R, Cremer C, Speicher MR, Cremer T (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3:e157

    Article  PubMed  PubMed Central  Google Scholar 

  • Bornfleth H, Sätzler K, Eils R, Cremer C (1998) High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy. J Microsc 189(2):2871–2886

    Article  Google Scholar 

  • Bornfleth H, Edelmann P, Zink D, Cremer C, Cremer T (1999) Quantitative motion analysis of sub-chromosomal foci in living cells using four-dimensional microscopy. Biophys J 77(5):2771–2886

    Article  Google Scholar 

  • Boveri T (1909) Die Blastomerenkerne von Ascaris meglocephala und die Theorie der Chromosomenindiviualität. Archiv für Zellforschung 3:181–268

    Google Scholar 

  • Brandriff BF, Gordon LA, Tynan KT, Olsen AS, Mohrenweiser HW, Fertitta A, Carrano AV, Trask BJ (1992) Order and genomic distance among members of the carcinoembryonic antigen (CEA) gene family determined by fluorescence in situ hybridization. Genomics 12(4):773–779

    Article  CAS  PubMed  Google Scholar 

  • Brianna Caddle L, Grant JL, Szatkiewicz J, van Hase J, Shirley BJ, Bewersdorf J, Cremer C, Arneodo A, Khalil A, Mills KD (2007) Chromosome neighborhood composition determines translocation outcomes after exposure to high-dose radiation in primary cells. Chromosom Res 15:1061–1073

    Article  Google Scholar 

  • Bridger JM, Herrmann H, Münkel C, Lichter P (1998) Identification of an interchromosomal compartment by polymerization of nuclear-targeted vimentin. J Cell Sci 111(9):1241–1253

    Article  CAS  PubMed  Google Scholar 

  • Capoulade J, Wachsmuth M, Hufnagel L, Knop M (2011) Quantitative fluorescence imaging of protein diffusion and interaction in living cells. Nat Biotechnol 29(9):835–839

    Article  CAS  PubMed  Google Scholar 

  • Carey M, Leatherwood J, Ptashne M (1990) A potent GAL4 derivative activates transcription at a distance in vitro. Science 247(4943):710–712

    Article  CAS  PubMed  Google Scholar 

  • Castro C (1994) Measurement of the elasticity of single chromatin fibers: the effect of histone H1. PhD thesis 1994, University of Oregon, Eugene, Oregon, USA

    Google Scholar 

  • Cmarko D, Verschure PJ, Martin TE, Dahmus ME, Krause S, Fu XD, van Driel R, Fakan S (1999) Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection. Mol Biol Cell 10:211–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comings DE (1968) The rationale for an ordered arrangement of chromatin in the interphase nucleus. Am J Hum Genet 20:440–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Comings DE (1978) Mechanisms of chromosome banding and implications for chromosome structure. Annu Rev Genet 20:440–460

    Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2(3):a003889

    Article  PubMed  PubMed Central  Google Scholar 

  • Cremer C, Zorn C, Cremer T (1974) An ultraviolet microbeam for 257nm. Microskopy Acta 75:331–337

    CAS  Google Scholar 

  • Cremer T, Cremer C, Baumann H, Luedtke EK, Sperling K, Teubner V, Zorn C (1982a) Rabl’s model of the interphase chromosome arrangement, tested in chinese hamster cells by premature chromosome condensation and laser-UV-microbeam experiments. Hum Genet 60(1):46–46

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Cremer C, Schneider T, Baumann H, Hens L, Kirsch-Volders M (1982b) Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments. Hum Genet 62(3):201–209

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Lichter P, Borden J, Ward DC, Manuelidis L (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome specific library probes. Hum Genet 80(3):235–246

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Bustamante C (2000) Pulling a single chromatin fiber reveals the forces that mantain its higher-order structure. Proc Natl Acad Sci U S A 97(1):127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva PSD, Delgado Bieber AG, Leal IR, Knoch TA, Tabarelli M, Leal IR, Wirth R (2013) Foraging in highly dynamic environments: leaf-cutting ants adjust foraging trail networks to pioneer plant availability. Entomol Exp Appl 147:110–119

    Article  Google Scholar 

  • Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311

    Article  CAS  PubMed  Google Scholar 

  • Dietzel S, Schiebel K, Little G, Edelmann P, Rappold GA, Eils R, Cremer C, Cremer T (1996) The 3D positioning of ANT2 and ANT3 genes within female X chromosome territories correlates with gene activity. Exp Cell Res 252(2):363–375

    Article  Google Scholar 

  • Dietzel S, Eils R, Sätzler K, Bornfleth H, Jauch A, Cremer C, Cremer T (1998a) Evidence against a looped structure of the inactive human X chromosome territory. Exp Cell Res 240(2):187–196

    Article  CAS  PubMed  Google Scholar 

  • Dietzel S, Jauch A, Kienle D, Qu G, Holtgreve-Grez H, Eils R, Münkel C, Bittner M, Meltzer PS, Trent JM, Cremer T (1998b) Separate and variably shaped chromosome arm domains are disclosed by chromosome arm painting in human cell nuclei. Chromosom Res 6(1):25–33

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Dostie J, Dekker J (2007) Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc 2:988–1002

    Article  CAS  PubMed  Google Scholar 

  • Dubochet J (2012) Cryo-EM – the first thirty years. J Microsc 245(3):221–224

    Article  CAS  PubMed  Google Scholar 

  • Duplantier B, Jannink G, Sikorav JL (1995) Anaphase chromatid motion: involvement of type II DNA topoisomerases. Biophys J 69(4):1596–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich L, Münkel C, Chirico G, Langowski J (1997) A Brownian dynamics model for the chromatin fiber. Comput Appl Biosci 13(3):271–279

    CAS  PubMed  Google Scholar 

  • Eigen M, Winkler-Oswatitsch R (1981a) Transfer-RNA, an early gene? Naturwissenschaften 68:217–228

    Article  CAS  PubMed  Google Scholar 

  • Eigen M, Winkler-Oswatitsch R (1981b) Transfer-RNA: the early adapter. Naturwissenschaften 68:217–228

    Article  CAS  PubMed  Google Scholar 

  • Eils R, Dietzel S, Bertin E, Schröck E, Speicher MR, Ried T, Robert-Nicoud M, Cremer C, Cremer T (1996) Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X-chromosome territories have similar volumes but differ in shape and surface structure. J Cell Biol 135(6):1427–1440

    Article  CAS  PubMed  Google Scholar 

  • Eltsov M, Maclellan KM, Maeshima K, Frangakis AS, Dubochet J (2008) Analysis of cyro-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. PNAS 105(50):19732–19737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erenpreisa J (1989) Large rossettes - the element of the suprachromonemal organisation of interphase cell nucleus. Proc Latv Acad Sci Ser B 7:68–71. (Russ)

    Google Scholar 

  • Erenpreisa J, Giuliani A (2019) Resolution of complex issues in genome regulation and cancer requires non-linear and network-based thermodynamics. Int J Mol Sci 21(1):e240, 1–15

    Google Scholar 

  • Erenpreisa J, Zhukotsky A, Butusova N, Erenpreiss J, Arshavskaya T (1991) Accumulation of DNA within chromocentres of terminally differentiating chick embryo chondrocytes. Acta histochemica 90(2):113–119. https://doi.org/10.1016/S0065-1281(11)80045-0

    Article  CAS  PubMed  Google Scholar 

  • Erenpreisa J, Krigerts J, Salmina K, Gerashchenko BI, Freivalds T, Kurg R, Winter R, Krufczik M, Zayakin P, Hausmann M, Giuliani A (2021) Heterochromatin networks: topology, dynamics, and function (a working hypothesis). Cell 10:1–25

    Google Scholar 

  • Ermak DL, McCammon JA (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69(4):1352–1359

    Article  CAS  Google Scholar 

  • Ermler S, Krunic D, Knoch TA, Moshir S, Mai S, Greulich-Bode KM, Boukamp P (2004) Cell cycle-dependent 3D distribution of telomeres and telomere repeat-binding factor 2 (TRF2) in HaCaT and HaCaT-myc cells. Europ J Cell Biol 83(11–12):681–690

    Article  CAS  PubMed  Google Scholar 

  • Fedorova E, Zink D (2008) Nuclear architecture and gene regulation. Biochim Biophys Acta 1783:2174–2184

    Article  CAS  PubMed  Google Scholar 

  • Fedorova E, Zink D (2009) Nuclear genome organization: common themes and individual patterns. Curr Opin Genet Dev 19:166–171

    Article  CAS  PubMed  Google Scholar 

  • Fejes-Toth K, Knoch TA, Wachsmuth M, Frank-Stöhr M, Stöhr M, Bacher CP, Müller G, Rippe K (2004) Trichostatin A induced histone acetylation causes decondensation of interphase chromatin. J Cell Sci 117(18):4277–4287

    Article  Google Scholar 

  • Finch JT, Klug A (1976) Solenoidal model for the superstructure in chromatin. Proc Natl Acad Sci U S A 73:1897–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francke U (1994) Digitized and differentially shaded human chromosome ideograms for genomic applications. Cytogenet Cell Genet 65:206–219

    Article  CAS  PubMed  Google Scholar 

  • Freire JP, Horta A (1976) Mean reciprocal distances of short polymethylene chains calculation of the translational diffusion coefficient of n-alkanes. J Chem Phys 65:4049

    Article  CAS  Google Scholar 

  • Gasser SM, Laroche T, Falquet J, Boy de la Tour E, Laemmli K (1986) Metaphase chromosome structure involvement of topoisomerase II. J Mol Biol 188(4):613–629

    Article  CAS  PubMed  Google Scholar 

  • Gerlich D, Beaudouin J, Kalbfuss B, Daigle N, Eils R, Ellenberg J (2003) Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112:751–764

    Article  CAS  PubMed  Google Scholar 

  • Giorgetti L, Galupa R, Nora EP, Piolot T, Lam F, Dekker J, Tiana G, Heard E (2014) Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157(4):950–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagège H, Klous P, Braem C, Splinter E, Dekker J, Cathala G, de Laat W, Forné T (2007) Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc 2:1722–1733

    Article  PubMed  Google Scholar 

  • Horowitz RA, Agard DA, Sedat JW, Woodcock CL (1994) The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-Zag nucleosomal ribbon. J Cell Biol 125(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Horowitz RA, Koster AJ, Walz J, Woodcock CL (1997) Automated electron microscope tomography of frozen-hydrated chromatin: the irregular three-dimensional zigzag architecture persists in compact, isolated fibers. J Struct Biol 120(3):353–362

    Article  CAS  PubMed  Google Scholar 

  • Houchmandzadeh B, Dimitrov S (1999) Elasticity measurements show the existence of thin rigid cores inside mitotic chromosomes. J Cell Biol 145(2):215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houchmandzadeh B, Marko JF, Chatenay D, Libchaber A (1999) Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration. J Cell Biol 139(1):1–12

    Article  Google Scholar 

  • Ibel K (1982) Neutron diffraction of interphase nuclei. J Mol Biol 160(1):77–85

    Article  CAS  PubMed  Google Scholar 

  • Iniesta A, Garcia de la Torre J (1990) A second-order algorithm for the simulation of the Brownian dynamics of macromolecular models. J Chem Phys 92:2015–2019

    Article  CAS  Google Scholar 

  • Jackson DA, Pombo A (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 140:1285–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jannink G, Duplantier B, Sikorav JL (1996) Forces on chromosomal DNA during anaphase. Biophys J 71(1):451–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jhunjhunwala S, van Zelm MC, Peak MM, Cutchin S, Riblet R, van Dongen JJM, Grosveld FG, Knoch TA, Murre C (2008) The 3D-structure of the immunoglobulin heavy chain locus: implications for long-range genomic interactions. Cell 133(2):265–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kepper N, Foethke D, Stehr R, Wedemann G, Rippe K (2008) Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation. Biophys J 95(8):3677–3691

    Article  PubMed  PubMed Central  Google Scholar 

  • Kepper N, Schmitt E, Lesnussa M, Weiland Y, Eussen HB, Grosveld FG, Hausmann M, Knoch TA (2010) Visualization, Analysis, and Design of COMBO-FISH Probes in the Grid-Based GLOBE 3D Genome Platform. Stud Health Technol Inform 159:171–180

    PubMed  Google Scholar 

  • Khalil A, Grant JL, Caddle LB, Atzema E, Mills KD, Arneodo A (2007) Chromosome territories have a highly nonspherical morphology and nonrandom positioning. Chromosom Res 15:899–916

    Article  CAS  Google Scholar 

  • Kireeva N, Lakonishok M, Kireev I, Hirano T, Belmont AS (2004) Visualization of early chromsosme condensation: a hierarchical folding, axial glue model of chromosome structure. J Cell Biol 166(6):775–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoch TA (1998) Dreidimensionale organisation von Chromosomen-Domänen in simulation und experiment. (three-dimensional organization of chromosome domains in simulation and experiment.) TAK Press, Tobias A. Knoch, Mannheim, Germany, isbn: 3-00-010685-5

    Google Scholar 

  • Knoch TA (2002) Approaching the three-dimensional organization of the human genome: structural-, scaling- and dynamic properties in the simulation of interphase chromosomes and cell nuclei, long-range correlations in complete genomes, in vivo quantification of the chromatin distribution, construct conversions in simultaneous co-transfections. TAKPress, Tobias A. Knoch, Mannheim, ISBN 3-00-009959-X

    Google Scholar 

  • Knoch TA (2003) Towards a holistic understanding of the human genome by determination and integration of its sequential and three-dimensional organization. In: Krause E, Jäger W, Resch M (eds) High performance computing in science and engineering 2003. High-Performance Computing Center (HLRS) Stuttgart, University of Stuttgart, Springer, Berlin-Heidelberg-New York, pp 421–440. ISBN 3- 540-40850-9

    Google Scholar 

  • Knoch TA (2018) A guided protocol for array based T2C - a high-quality high-resolution high-throughput chromosome interaction capture. Curr Protoc Hum Genet 99(1):1–35

    Google Scholar 

  • Knoch TA (2019a) A consistent systems mechanics model of the 3D architecture of genomes. https://doi.org/10.5772/intechopen.89836, in chromatin and epigenetics, editors C. Logie and T. A. Knoch, IntechOpen, isbn 9781789844924, 1–27

  • Knoch TA (2019b) Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments - an evaluation and review framework of the 3D genome organization. Semin Cell Dev Biol 90:19–42

    Article  CAS  PubMed  Google Scholar 

  • Knoch TA (2022) How genomes emerge, function, and evolve: living systems emergence—genotype-phenotype-multilism—genome/systems ecology (chapter 4). In: Kloc M, Kubiak JZ (eds) Nuclear, chromosomal, and genomic architecture in biology and medicine. Results and problems in cell differentiation, vol 70. Springer, Heidelberg. ISBN: 978-3-031-06572-9

    Google Scholar 

  • Knoch TA, Logie C (2019) Preface to chromatin and epigenetics. edited by Colin Logie and Tobias Aurelius Knoch. In: Chromatin and epigenetics, editors C. Logie and T. A. Knoch, IntechOpen, https://doi.org/10.5772/intechopen.71387, isbn 978-1-78984-493-1, Print ISBN: 978-1-78984-492-4, eBook (PDF) isbn: 978-1-78984-982-0, XI-XV, 29.01.2020

  • Knoch TA, Waldeck W, Müller G, Alonso A, Langowski J (2000a) DNA-Sequenz und Verfahren zur in vivo Markierung und Analyse von DNA/Chromatin in Zellen. German Patent Application 10013204.9-44 and International Patent Application PCT/DE01/01044

    Google Scholar 

  • Knoch TA, Münkel C, Langowski J (2000b) Three-dimensional organization of chromosome territories in the human interphase nucleus. In: Krause E, Jäger W (eds) High Performance Computing in Science and Engineering 1999. High-Performance Computing Center (HLRS) Stuttgart, University of Stuttgart, Springer, Berlin-Heidelberg-New York, ISBN 3-540-66504-8, pp 229–238

    Google Scholar 

  • Knoch TA, Göcker M, Lohner R, Abuseiris A, Grosveld FG (2009a) Fine-structured multi-scaling long-range correlations in completely sequenced genomes - features, origin and classification. Eur Biophys J 38(6):757–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoch TA, Lesnussa M, Kepper FN, Eussen HB, Grosveld FG (2009b) The GLOBE 3D genome platform - towards a novel system-biological paper tool to integrate the huge complexity of genome organization and function. Stud Health Technol Inform 147:105–116

    PubMed  Google Scholar 

  • Knoch TA, Wachsmuth M, Kepper N, Lesnussa M, Abuseiris A, Imam AMA, Kolovos P, Zuin J, Kockx CEM, Brouwer RWW, van de Werken HJG, van Ijken WFJ, Wendt KS, Grosveld FG (2016) The detailed 3D multi-loop aggregate/rosette chromatin architecture and functional dynamic organization of he human and mouse genomes. Epigenetics Chromatin 9(58):1–22

    Google Scholar 

  • Knoch TA, Göcker M, Lohner R (2002) Methods for the analysis, classification and/or tree construction of sequences using correlation analysis. US Patent Application 60/436.056 and International Patent Application PCT/EP03/14854

    Google Scholar 

  • Knopf WC, Waldeck W (2001) DNA-binding enzymes, structural themes. Enzyclopedia of life sciences, artickle #2717, Macmillion Publishers Ltd, Nature Publishing Group, London, http://www.els.net

  • Kölbl AC, Weigl D, Mulaw M, Thormeyer T, Bohlander SK, Cremer T, Dietzel S (2012) The radial nuclear positioning of genes correlates with features of megabase-sized chromatin domains. Chromosom Res 20(6):735–752

    Article  Google Scholar 

  • Kolovos P, Knoch TA, Grosveld FG, Cook PR, Papantonis A (2012) Enhancers and silencers: an integrated and simple model for their function. Epigenetics Chromatin 5:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolovos P, van de Werken HJ, Kepper N, Zuin J, Brouwer RW, Kockx CE, Wendt KS, van IJcken WFJ, Grosveld F, Knoch TA (2014) Targeted chromatin capture (T2C): a novel high resolution high throughput method to detect genomic interactions and regulatory elements. Epigenetics Chromatin 7:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Kornberg RD, Klug A (1981) The nucleosome. Sci Am 2:28–44

    Google Scholar 

  • Kost C, Gama de Oliveira E, Knoch TA, Wirth R (2005) Spatio-temporal permanence and plasticity of foraging trails in young and mature leaf-cutting ant colonies (Atta spp.). J. Trop. Ecol 21(6):677–688

    Google Scholar 

  • Lawrence JB, Singer RH, Marselle LM (1989) Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57(3):493–502

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JB, Singer RH, McNeil JA (1990) Interphase and metaphase resolution of different distances within the human dystrophin gene. Science 249(4971):928–932

    Article  CAS  PubMed  Google Scholar 

  • Leitch AR, Mosgöller W, Schwarzacher T, Bennett MD, Heslop-Harrison JS (1990) Genomic in situ hybridization to sectioned nuclei shows chromosome domains in grass hybrids. J Cell Sci 95(Pt3):335–341

    Article  CAS  PubMed  Google Scholar 

  • Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80(3):224–234

    Article  CAS  PubMed  Google Scholar 

  • Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luger C, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Science 389:251–260

    CAS  Google Scholar 

  • Madra N, Sokal AD (1988) The pivot algorithm: a highly efficient Monte Carlo method for the self avoiding random walk. J Stat Phys 50(1/2):109–189

    Article  Google Scholar 

  • Malo D, Vidal S, Lieman JH, Ward DC, Gros P (1993) Physical delineation of the minimal chromosomal segment encompassing the murine host resistance locus Bcg. Genomics 17(3):667–675

    Article  CAS  PubMed  Google Scholar 

  • Manuelidis L (1990) A view on interphase chromosomes. Science 250:1533–1540

    Article  CAS  PubMed  Google Scholar 

  • Manuelidis L, Chen TL (1989) A unified model of eukaryotic chromosomes. Cytometry 11:8–25

    Article  Google Scholar 

  • Meaburn KJ, Misteli T (2007) Cell biology: chromosome territories. Nature 445:379–781

    Article  CAS  PubMed  Google Scholar 

  • Meaburn KJ, Misteli T, Soutoglou E (2007) Spatial genome organization in the formation of chromosomal translocations. Semin Cancer Biol 17(1):80–90

    Article  CAS  PubMed  Google Scholar 

  • Metropolis M, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  • Monier K (1997) Cartographie linéaire et tridimensionnelle du génome humain par hybridation in situ fluorescente et imagerie microscopique digitale. PhD thesis. Institut Albert Bonniot, Université Joseph Fourier Grenoble I, Grenoble, France

    Google Scholar 

  • Müller O, Kepper N, Schöpflin R, Ettig R, Rippe K, Wedemann G (2014) Changing chromatin fiber conformation by nucleosome repositioning. Biphys J 107(9):2141–2150

    Article  Google Scholar 

  • Müller-Storm HP, Sogo JM, Schaffner W (1989) An enhancer stimulates transcription in trans when attached to the promoter via a protein bridge. Cell 58(4):767–777

    Article  Google Scholar 

  • Nakayasu H, Berezney R (1989) Mapping replicational sites in the eucaryotic cell nucleus. J Cell Biol 108(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J (2013) Organization of the mitotic chromosome. Science 342(6161):948–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitiss JL (1998) Investigating the biological functions of DNA topoisomerases in eukaryotic cells. Biochim Biophys Acta 1400(1–3):63–81

    Article  CAS  PubMed  Google Scholar 

  • Notbohm H (1986) Small angle scattering of cell nuclei. Eur Biophys J 13(6):367–372

    Article  CAS  PubMed  Google Scholar 

  • Okada TA, Commings DE (1979) Higher order structure of chromosomes. Chromosoma 72(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Olins AL, Olins DE (1974) Spheroid chromatin units (v bodies). Science 183:330–332

    Article  CAS  PubMed  Google Scholar 

  • Ostashevsky JY (2002) A polymer model for large-scale chromatin organization in lower eukaryotes. Mol Biol Cell 13(6):2157–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostashevsky JY, Lange CS (1994) The 30 nm chromatin fiber as a flexible polymer. J Biomol Struct Dyn 23(11):813–820

    Article  Google Scholar 

  • Parada LA, McQueen PG, Munson PJ, Misteli T (2002) Conservation of relative chromosome positioning in normal and cancer cells. Curr Biol 12:1692–1697

    Article  CAS  PubMed  Google Scholar 

  • Parada LA, McQueen PG, Misteli T (2004) Tissue-specific spatial organization of genomes. Genome Biol 5:R44

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardoll DM, Vogelstein B, Coffey DS (1980) Localization of SV40 genes within supercoiled loop domains. Nuc Acid Res 8(23):5623–5633

    Article  Google Scholar 

  • Paulson JR (1988) Scaffolding and radial loops: the structural organization of metaphase chromosomes. Chromosomes and Chromatin 3. CRC Press, Boca Raton, FL, pp 3–36

    Google Scholar 

  • Paulson JR, Laemmli UK (1977) The structure of histone-depleted metaphase chromosomes. Cell 12(3):817–828

    Article  CAS  PubMed  Google Scholar 

  • Pienta KJ, Coffey DS (1984) A structural analysis of the role of the nuclear matrix and DNA loops in the organization of the nucleus and chromosome. J Cell Sci Suppl 1:123–135

    Article  CAS  PubMed  Google Scholar 

  • Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray JW (1988) Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosomes 4. Proc Natl AcadSci USA 85(23):9138–9142

    Article  CAS  Google Scholar 

  • Poirier M, Eroglu S, Chatenay D, Marko JF (2000) Reversible and irreversible unfolding of mitotic newt chromosomes by applied force. Mol Biol Cell 11(1):269–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popp S, Scholl HP, Loos P, Jauch A, Stelzer E, Cremer C, Cremer T (1990) Distribution of chromosome 18 and X centric heterochromatin in the interphase nucleus of cultured human cells. Exp Cell Res 189(2):1–12

    Article  CAS  PubMed  Google Scholar 

  • Rabl C (1885) Über Zellteilung. Morphologisches Jahrbuch 10:214–330

    Google Scholar 

  • Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Lieberman-Aiden E (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1–16

    Article  Google Scholar 

  • Rauch J (1999) Spektrale Präzisionsdistanzmikroskopie zur Untersuchung der 3D-Topologie ausgewählter DNA-Punktmarker. PhD thesis. Faculty for Physics and Astronomy, Ruprecht Karls University of Heidelberg

    Google Scholar 

  • Rauch J, Knoch TA, Solovei I, Teller K, Stein S, Buiting K, Horsthemke B, Langowski J, Cremer T, Hausmann M, Cremer C (2008) Lightoptical precision measurements of the Prader- Willi/Angelman syndrome imprinting locus in human cell nuclei indicate maximum condensation changes in the few hundred nanometer range. Differentiation 76(1):66–82

    Article  CAS  PubMed  Google Scholar 

  • Reichenzeller M, Burzlaff A, Lichter P, Herrmann H (2000) In vivo observation of a nuclear channel-like system: evidence for a distinct interchromosomal domain compartment in interphase cells. J Struct Biol 129(2–3):175–185

    Article  CAS  PubMed  Google Scholar 

  • Reznik NA, Yampol GP, Kiseleva EV, Khristolyubova NB, Gruzdev AD (1990) Possible functional structures in the chromomere. In: Harris JR, Zbarsky IB (eds) Nuclear structure and function. Plenum Press, New York, London, pp 27–29

    Chapter  Google Scholar 

  • Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423(6936):145–150

    Article  CAS  PubMed  Google Scholar 

  • Ringrose L, Chalbanis S, Angrand PO, Woodroofe C, Stewart AF (1999) Quantitative comparison of DNA looping in vitro and in vivo: chromatin increases the effective DNA flexibility at short distances. EMBO J 18(23):6630–6641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinett CC, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont AS (1994) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135(6):1685–1700

    Article  Google Scholar 

  • Roix JJ, McQueen PG, Munson PJ, Parada LA, Misteli T (2003) Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet 34:287–291

    Article  CAS  PubMed  Google Scholar 

  • Ronneberger O, Baddeley D, Scheipl F, Verveer PJ, Burkhardt H, Cremer C, Fahrmeir L, Cremer T, Joffe B (2008) Spatial quantitative analysis of fluorescently labeled nuclear structures: problems, methods, pitfalls. Chromosom Res 16:523–562

    Article  CAS  Google Scholar 

  • Roukos V, Voss TC, Schmidt CK, Lee S, Wangsa D, Misteli T (2013) Spatial dynamics of chromosome translocations in living cells. Science 341(6146):660–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachs RK, van den Engh G, Trask B, Yokota H, Hearst JE (1995) A random- walk/giant-loop model for interphase chromosomes. Proc Natl Acad Sci U S A 92(7):2710–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schardin M, Cremer T, Hager HD, Lang M (1985) Specific staining of human chromosomes in Chinese hamster x man hybrid cell lines demonstrates interphase chromosome territories. Hum Genet 71(4):281–287

    Article  CAS  PubMed  Google Scholar 

  • Senger G, Ragoussis J, Trowsdale J, Sheer D (1993) Fine mapping of the human MHC class II region within chromosome band 6p21 and evaluation of probe ordering using interphase fluorescence in situ hybridization. Cytogenet Cell Genet 64(1):49–53

    Article  CAS  PubMed  Google Scholar 

  • Sikorav JL, Jannink G (1994) Kinetics of chromosome condensation in the presence of topoisomerases: a phantom chain model. Biophys J 66(3Pt1):827–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38:1348–1354

    Article  CAS  PubMed  Google Scholar 

  • Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol 24(5):743–755

    Article  CAS  PubMed  Google Scholar 

  • Stack SM, Brown DB, Dewey WC (1977) Visualization of interphase chromosomes. J Cell Sci 26:281–299

    Article  CAS  PubMed  Google Scholar 

  • Stadhouders R, Kolovos P, Brouwer R, Zuin J, van den Heuvel A, Kockx C, Palstra RJ, Wendt KS, Grosveld FG, van IJcken W, Soler E (2013) Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions. Nat Protoc 8:509–524

    Article  CAS  PubMed  Google Scholar 

  • Stehr R, Schöpfling R, Ettig R, Kepper N, Rippe K, Wedemann G (2010) Exploring the conformational space of chromatin fibers and their stability by numerical dynamic phase diagrams. Biophys J 98(6):1028–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajbakhsh J, Luz H, Bornfleth H, Lampel S, Cremer C, Lichter P (2000) Spatial distribution of GC- and AT-rich DNA sequences within human chromosome territories. Exp Cell Res 255(2):229–237

    Article  CAS  PubMed  Google Scholar 

  • Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10:1453–1465

    Article  CAS  PubMed  Google Scholar 

  • Trask B, Pinkel D, van den Engh G (1989) The proximity of DNA sequences in interphase cell nuclei is correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs. Genomics 5(4):710–717

    Article  CAS  PubMed  Google Scholar 

  • Trask BJ, Massa H, Kenwrick S, Gitschier J (1991) Mapping of human chromosome Xq28 by two-color fluorescence in situ hybridization of DNA sequences to interphase cell nuclei. Am J Hum Genet 48(1):1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trask BJ, Allen S, Massa H, Fertitta A, Sachs R, van den Engh G, Wu M (1993) Studies of metaphase and interphase chromosomes using fluorescence in situ hybridization. Cold Spring Harb Symp Quant Biol 58:767–775

    Article  CAS  PubMed  Google Scholar 

  • van de Corput MP, de Boer E, Knoch TA, van Capellen WA, Quintanilla A, Ferrand L, Grosveld FG (2012) Super-resolution imaging reveals three-dimensional folding dynamics of the b-globin locus upon gene activation. J Cell Sci 125(PT19):4630–4639

    PubMed  Google Scholar 

  • van den Engh G, Sachs R, Trask BJ (1992) Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model. Science 257(5075):1410–1412

    Article  PubMed  Google Scholar 

  • van Holde K, Zlatanova J (1995) Chromatin higher order structure: chasing a mirage? J Biol Chem 270(15):8373–8376

    Article  PubMed  Google Scholar 

  • Verdier PH, Stockmayer WH (1962) Monte Carlo calculations on the dynamics of polymers in dilute solution. J Chem Phys 36(1):227–235

    Article  CAS  Google Scholar 

  • Verschure PJ (2006) Chromosome organization and gene control: it is difficult to see the picture when you are inside the frame. J Cell Biochem 99(1):23–34

    Article  PubMed  Google Scholar 

  • Verschure PJ, van der Kraan I, Manders EM, van Driel R (1999) Spatial relationship between transcription sites and chromosome territories. J Cell Biol 147:13–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verschure PJ, van der Kraan I, Enserink JM, Moné MJ, Manders EM, van Driel R (2002) Large-scale chromatin organization and the localization of proteins involved in gene expression in human cells. J Histochem Cytochem 50(10):1303–1312

    Article  CAS  PubMed  Google Scholar 

  • Visser AE, Aten JA (1999) Chromosomes as well as chromosomal subdomains constitute distinct units in interphase nuclei. J Cell Sci 112:3353–3360

    Article  CAS  PubMed  Google Scholar 

  • Visser AE, Eils R, Jauch A, Little G, Bakker P, Cremer T, Aten JA (1998) Spatial distribution of early and late replicating chromatin in interphase territories of active and inactive X- chromosomes. Exp Cell Res 243(2):398–407

    Article  CAS  PubMed  Google Scholar 

  • Visser AE, Jaunin F, Fakan S, Aten JA (2000) High resolution analysis of interphase chromosome domains. J Cell Sci 113:2585–2593

    Article  CAS  PubMed  Google Scholar 

  • Vogel F, Schroeder TM (1974) The internal order of the interphase nucleus. Humangenetik 25(4):265–297

    Article  CAS  PubMed  Google Scholar 

  • Wachsmuth, M. (2001) Fluorescence fluctuation microscopy: Design of a prototype, theory and measurements of the mobility of biomolecules in the cell nucleus. PhD thesis. Faculty for Physics and Astronomy, Ruprecht Karls University of Heidelberg

    Google Scholar 

  • Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298(4):677–686

    Article  CAS  PubMed  Google Scholar 

  • Wachsmuth M, Weidemann T, Müller G, Hoffmann-Rohrer UW, Knoch TA, Waldeck W, Langowski J (2003) Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching. Biophys J 84(5):3353–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wachsmuth M, Knoch TA, Rippe K (2016) Mapping properties of dynamic chromatin domains by fluorescence correlation spectroscopy. Epigenetics and Chromatin 9:57, 1-22

    Google Scholar 

  • Walter J, Schermelleh L, Cremer M, Tashiro S, Cremer T (2003) Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J Cell Biol 2003(160):685–697

    Article  Google Scholar 

  • Warrington JA, Bengtsson U (1994) High-resolution physical mapping of human 5q31-q33 using three methods: radiation hybrid mapping, interphase fluorescence in situ hybridization, and pulsed-field gel electrophoresis. Genomics 24(2):395–398

    Article  CAS  PubMed  Google Scholar 

  • Wedemann G, Langowski J (2002) Computer simulation of the 30nm chromatin fiber. Biophys J 82(6):2847–2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Samarabundu J, Devdkar RS, Siegel AJ, Acharya R, Berezney R (1998) Segregation of transcription and replication sites into higher order domains. Science 281(5382):1502–1506

    Article  CAS  PubMed  Google Scholar 

  • Weidemann T, Wachsmuth M, Knoch TA, Müller G, Waldeck W, Langowski J (2003) Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy and cofocal imaging. J Mol Biol 334(2):229–240

    Article  CAS  PubMed  Google Scholar 

  • Wolffe A (1995) Chromatin: structure and function, 2nd edn. Academic Press, London

    Google Scholar 

  • Woodcock CL (1994) Chromatin fibers observed in situ in frozen hydrated sectionsNative fiber diameter is not correlated with nucleosome repeat length. J Cell Biol 125(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Woodcock CL, Horowitz RA (1995) Chromatin organization reviewed. Trends in Cell Biol 5(7):272–277

    Article  CAS  Google Scholar 

  • Woodcock CL, Horowitz RA (1997) Electron microscopy of chromatin. Methods 12(1):84–95

    Article  CAS  PubMed  Google Scholar 

  • Woodcock CL, Horowitz RA (1998) Electron microscopic imaging of chromatin with nucleosome resolution. Methods Cell Biol 53:167–186

    Article  CAS  PubMed  Google Scholar 

  • Woodcock CL, Grigoryev SA, Horowitz RA, Whitaker N (1993) A chromatin folding model that incorporates linker variability generates fibers resembling the native structures. Proc Natl Acad Sci U S A 90(19):9021–9025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota H, van den Engh G, Hearst J, Sachs RK, Trask BJ (1995) Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus. J Cell Biol 130(6):1239–1249

    Article  CAS  PubMed  Google Scholar 

  • Yokota H, Singer MJ, van den Engh GJ, Trask BJ (1997) Regional differences in the compaction of chromatin in human G0/G1 interphase nuclei. Chrom Res 5(3):157–166

    Article  CAS  PubMed  Google Scholar 

  • Yunis JJ (1981) Mid-prophase human chromosomes. The attainment of 2000 bands. Hum Genet 56:293–298

    Article  CAS  PubMed  Google Scholar 

  • Zachar Z, Kramer J, Mims IP, Bingham PM (1993) Evidence for channeled diffusion of pre-mRNAs during nuclear RNA transport in metazoans. J Cell Biol 121(4):729–742

    Article  CAS  PubMed  Google Scholar 

  • Zink D, Cremer T (1998) Chromosome dynamics in nuclei of living cells. Curr Biol 8(9):R321–R324

    Article  CAS  PubMed  Google Scholar 

  • Zink D, Cremer T, Saffrich R, Fischer R, Trendelenburg MF, Ansorge W, Stelzer EH (1998) Structure and dynamics of human interphase chromosome territories in vivo. Hum Genet 102(2):241–251

    Article  CAS  PubMed  Google Scholar 

  • Zink D, Bornfleth H, Visser A, Cremer C, Cremer T (1999) Organization of early and late replicating DNA in human chromosome territories. Exp Cell Res 247(1):176–188

    Article  CAS  PubMed  Google Scholar 

  • Zirbel RM, Mathieu UR, Kurz A, Cremer T, Lichter P (1993) Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries. Chrom Res 1(2):93–106

    Article  CAS  PubMed  Google Scholar 

  • Zorn C, Cremer T, Cremer C, Zimmer J (1976) Laser UV microirradiation of interphase nuclei and post-treatment with caffeine. A new approach to establish the arrangement of interphase chromosomes. Hum Genet 35(1):83–89

    Article  CAS  PubMed  Google Scholar 

  • Zorn C, Cremer C, Cremer T, Zimmer J (1979) Unscheduled DNA synthesis after partial UV irradiation of the cell nucleus. Distribution in interphase and metaphase. Exp Cell Res 124(1):111–119

    Article  CAS  PubMed  Google Scholar 

  • Zuin J, Dixon JR, van der Reijden MIJA, Ye Z, Kolovos P, Brouwer RWW, van de Corput MPC, van de Werken HJG, Knoch TA, van Ijcken WFJ, Grosveld FG, Ren B, Wendt KS (2014) Cohesin and CTCF differentitally affect chromatin architecture and gene expression in human cells. PNAS 111(3):996–1001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J. Langowski needs to be thanked for the many discussions, the many a suggestion, and supporting parts of this work. J. Langowski, K. Rippe, M. Wachsmuth, W. Waldeck, and A. Bachmann are thanked for critical reading of the manuscript. The following people need to be thanked who supported and influenced this work of T.A.K especially T. Weidemann, K. Fejes-Toth, M. Göker, R. Lohner, M. Stör, E. Spiess, K. Rippe, W. Waldeck, C. Cremer, T. Cremer, K. Erenpreisa, A. Ollins, D. Ollins, C. C. Murre, J. Skok, F. G. Grosveld, and K. Egger. This work was supported mainly by the Bundesministerium für Bildung und Forschung (BMBF) under grant # 01 KW 9602/2 (Heidelberg 3D Human Genome Study Group, German Human Genome Project). T. A. Knoch was kindly provided with a dissertation grant of the German Cancer Research Center (DKFZ) during which the main part of this work was done. The EpiGenSys virtual consortium lab is also thanked for its input at a later stage of this work. In this respect this work was also supported by ERASysBio+/FP7 and the nationals funding organizations (the Dutch Ministry for Science and Education, the Netherlands Science Organization, the UK Biotechnology and Biological Sciences Research Council, and the Bundesministerium für Bildung und Forschung (BMBF)). The High-Performance Computing Center Stuttgart (HLRS; grant HumNuc), the Supercomputing Center Karlsruhe (SCC; grant ChromDyn), and the Computing Facility of the German Cancer Research Center (DKFZ) are thanked for access to their CRAY T3E and IBM SP2s in the initial part of this work as well as the BMBF under grant #01AK803A (German MediGRID), and #01IG07015G (Services@MediGRID). Special thanks also go to all those institutions, universities, and companies providing us with ~500.000 CPUh per day via computational grid resources: the German D-Grid, the European Grid Initiative EGEE, as well as the Erasmus Computing Grid the Almere Grid, and all the unnamed computing grids there is access through via these. Very specially thanks go also to all the world-wide distributed and unnamed donors of desktop computer power of our world-wide Correlizer@home BOINC grid!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias A. Knoch .

Editor information

Editors and Affiliations

Ethics declarations

The author T.A.K. declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

1 Electronic Supplementary Material

Movie 1

(MOV 6892 kb)

Movie 2

(MOV 14726 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Knoch, T.A. (2022). Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization. In: Kloc, M., Kubiak, J.Z. (eds) Nuclear, Chromosomal, and Genomic Architecture in Biology and Medicine. Results and Problems in Cell Differentiation, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-031-06573-6_18

Download citation

Publish with us

Policies and ethics