Skip to main content

Principles, Concepts, and Recent Trends Applied to the Waste Biorefineries

  • Chapter
  • First Online:
Handbook of Waste Biorefinery

Abstract

The concern with global warming currently occupies a prominent place in the international context. As a result, it is necessary to change the global energy matrix to a cleaner, renewable, and sustainable one. The concept of sustainability has been in focus in recent years and is closely linked to the replacement of exhaustible sources by renewable energy sources. In this context, biorefineries play an important role, as they allow the conversion of biomass into bioenergy and bioproducts of commercial interest, in order to find a solution that combines economic viability with environmentally friendly production. Biorefineries have been the subject of study in numerous research, development, and innovation projects in most developed and developing countries. The versatility of waste biorefineries with regard to the products obtained and their different added values makes these facilities economically attractive. However, there are still numerous bottlenecks that must be overcome, which cover technical, scientific, economic, and political issues. At the moment, several studies have been carried out to define the best technologies and products from biomass. All these technological routes must be analyzed from an economic, social, and environmental perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvim, J. C., Alvim, F. A. L. S., Sales, V. H. G., Sales, P. V. G., Oliveira, E. M., Costa, A. C. R. Biorrefinarias: Conceitos, classificação, matérias primas e produtos. J Bioenergy Food Sci. Macapá, v.1, n. 3, p. 61–77, out./dez. 2014. https://doi.org/10.18067/jbfs.v1i3.22

  • Amore, A., Ciesielski, P. N., Lin, C.-y., Salvachúa, D. & Sànchez I Nogué, V. 2016. Development of lignocellulosic biorefinery technologies: recent advances and current challenges. Aust J Chem, 69, 1201

    Google Scholar 

  • Anastas PT, Lankey RL (2000) Life cycle assessment and green chemistry: the Yin and Yang of industrial ecology. Green Chem 2(6):289–295. https://doi.org/10.1039/b005650m

    Article  Google Scholar 

  • Aro T, Fatehi P (2017) Production and application of lignosulfonates and sulfonated lignin. ChemSusChem 10:1861–1877

    Article  Google Scholar 

  • Avfall SVO (2017) Biokol

    Google Scholar 

  • Azzi ES, Karltun E, Sundberg C (2021) Assessing the diverse environmental effects of biochar systems: an evaluation framework. J Environ Manag 286:112154

    Article  Google Scholar 

  • Badgujar KC, Bhanage BM (2018) Dedicated and waste feedstocks for biorefinery: an approach to develop a sustainable society. In: Waste biorefinery - potential and perspectives. Elsevier, pp 3–38. https://doi.org/10.1016/B978-0-444-63992-9.00001-Xs

    Chapter  Google Scholar 

  • Bauer F, Coenen L, Hansen T, Mccormick K, Palgan YV (2017) Technological innovation systems for biorefineries: a review of the literature. Biofuels Bioprod Biorefin 11:534–548

    Article  Google Scholar 

  • Beaulieu L, van Durme G, Arpin M-L (2015) Circular economy: a critical review of concepts. Montréal, Canada. https://www.deslibris.ca/ID/248856

  • Benites-lazaro LL, Giatti LL, Sousa Junior WC, Giarolla A (2020) Land-water-food nexus of biofuels: discourse and policy debates in Brazil. Environ Dev 33:100491

    Article  Google Scholar 

  • Bloomberg P (2018a) Bringing biochar to your city

    Google Scholar 

  • Bloomberg P (2018b) Key to success when replicating the biochar project

    Google Scholar 

  • Bose A, O’shea R, Lin R, Murphy JD (2020) A perspective on novel cascading algal biomethane biorefinery systems. Bioresour Technol 304:123027

    Article  Google Scholar 

  • Budzianowski WM (2017) High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries. Renew Sust Energ Rev 70:793–804

    Article  Google Scholar 

  • Carus M, Dammer L (2018) The circular bioeconomy – concepts, opportunities, and limitations. Ind Biotechnol 14(2):83–91. https://doi.org/10.1089/ind.2018.29121.mca

    Article  Google Scholar 

  • Carus M, Dammer L, Raschka A, Skoczinski P, vom Berg C (2020) “Renewable carbon: key to a sustainable and future: oriented chemical and plastic industry: definition, strategy, measures and potential” 09 (June): 25. https://doi.org/10.1002/ghg.1992

  • Cherubini F, Jungmeier G, Wellisch M, Willke T, Skiadas I, Van Ree R, de Jong E (2009) Toward a common classification approach for biorefinery systems. Biofuels Bioprod Biorefin 3(5):534–546. https://doi.org/10.1002/bbb.172

    Article  Google Scholar 

  • Clark JH, Deswarte FEI, Farmer TJ (2009) The integration of green chemistry into future biorefineries. Biofuels Bioprod Biorefin 3(1):72–90. https://doi.org/10.1002/bbb.119

    Article  Google Scholar 

  • Costa THF, Kadic A, Chylenski P, Várnai A, Bengtsson O, Lidén G, Eijsink VGH, Horn SJ (2020) Demonstration-scale enzymatic saccharification of sulfite-pulped spruce with addition of hydrogen peroxide for LPMO activation. Biofuels Bioprod Biorefin 14:734–745

    Article  Google Scholar 

  • D’odorico P, Davis KF, Rosa L, Carr JA, Chiarelli D, Dell’angelo J, Gephart J, Macdonald GK, Seekell DA, Suweis S, Rulli MC (2018) The global food-energy-water nexus. Rev Geophys 56:456–531

    Article  Google Scholar 

  • Demirbas A (2009) Biorefineries: current activities and future developments. Energy Convers Manag 50:2782–2801

    Article  Google Scholar 

  • Ellen MacArthur Foundation, Deutsche Post Foundation, and McKinsey Center for Business and Environment (2015) “Growth within: a circular economy vision for a competitive Europe.” European Union. www.ellenmacarthurfoundation.org

  • Enerkem (2021) “Carbon recycling: promote a circular economy with clean fules and chemicals made from waste.” 2021. https://enerkem.com/process-technology/carbon-recycling/

  • European Commission (2015) “Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions.” Brussels, Belgium. https://op.europa.eu/

  • Ferreira AF (2017) Biorefinery concept. In: Rabaçal M, Ferreira AF, Silva CAM, Costa M (eds) Biorefineries: targeting energy, high value products and waste valorisation. Springer Nature, pp 1–20

    Google Scholar 

  • Fevolden AM, Klitkou A (2017) A fuel too far? Technology, innovation, and transition in failed biofuel development in Norway. Energy Res Soc Sci 23:125–135

    Article  Google Scholar 

  • Grigg SVL, Read AD (2001) A discussion on the various methods of application for landfill tax credit funding for environmental and community projects. Resour Conserv Recycl 32(3–4):389–409. https://doi.org/10.1016/S0921-3449(01)00073-8

    Article  Google Scholar 

  • Ho DP, Ngo HH, Guo W (2014) A mini review on renewable sources for biofuel. Bioresour Technol 169:742–749

    Article  Google Scholar 

  • Jong E, Stichnothe H, Bell G, Jørgensen H (2020) “Bio-based chemicals: a 2020 update.” www.ieabioenergy.com

  • Kähler F, Carus M, Porc O, vom Berg C (2021) Turning off the tap for fossil carbon: future prospects for a global chemical and derived material sector based on renewable carbon. Hürth, Germany. www.renewable-carbon.eu/publications/

  • Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64(2):137–145. https://doi.org/10.1007/s00253-003-1537-7

    Article  Google Scholar 

  • Kamm B, Gruber P, Kamm M (eds) (2006) Biorefineries – industrial processes and products. Weinheim: Wiley-VCH, ISBN-13 978-3-527-31027-2

    Google Scholar 

  • King D, Inderwildi OR, Williams A (2010) The future of industrial biorefineries. World Economic Forum. https://www.iwbio.de/fileadmin/Publikationen/IWBio-Publikationen/WEF_Biorefineries_Report_2010.pdf

    Google Scholar 

  • Korhonen J, Honkasalo A, Seppälä J (2018) Circular economy: the concept and its limitations. Ecol Econ 143(January):37–46. https://doi.org/10.1016/j.ecolecon.2017.06.041

    Article  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43:1812–1836

    Article  Google Scholar 

  • Leong HY, Chang C-K, Khoo KS, Chew KW, Chia SR, Lim JW, Chang J-S, Show PL (2021) Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues. Biotechnol Biofuels 14(1):87. https://doi.org/10.1186/s13068-021-01939-5

    Article  Google Scholar 

  • Market Research Future (2021) Bio-based chemicals market: information by type (bioplastics, bio-lubricants, bio-solvents, bio-alcohols, bio-based acids, bio-surfactants), by application (food & beverage, pharmaceuticals, agriculture, packaging) – Global Forecast till 2027. Pune, India. https://www.marketresearchfuture.com/reports/bio-based-chemicals-market-5706

  • Modahl IS, Brekke A, Valente C (2015) Environmental assessment of chemical products from a Norwegian biorefinery. J Clean Prod 94:247–259

    Article  Google Scholar 

  • Mohan SV, Nikhil GN, Chiranjeevi P, Reddy CN, Rohit MV, Kumar AN, Sarkar O (2016) Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour Technol 215(September):2–12. https://doi.org/10.1016/j.biortech.2016.03.130

    Article  Google Scholar 

  • Molino A, Chianese S, Musmarra D (2016) Biomass gasification technology: the state of the art overview. J Energy Chem 25:10–25

    Article  Google Scholar 

  • Pfaltzgraff LA, Clark JH (2014) Green chemistry, biorefineries and second generation strategies for re-use of waste: an overview. In: Advances in biorefineries. Elsevier, pp 3–33. https://doi.org/10.1533/9780857097385.1.3

    Chapter  Google Scholar 

  • Ponnusamy VK, Nguyen DD, Dharmaraja J, Shobana S, Banu JR, Saratale RG, Chang SW, Kumar G (2019) A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour Technol 271:462–472

    Article  Google Scholar 

  • Rødsrud G, Lersch M, Sjöde A (2012) History and future of world’s most advanced biorefinery in operation. Biomass Bioenergy 46:46–59

    Article  Google Scholar 

  • Sadhukhan J, Ng SK, Hernandez EM (2014) Introduction. In: Biorefineries and chemical processes. Wiley, Chichester, pp 1–41. https://doi.org/10.1002/9781118698129.ch1

    Chapter  Google Scholar 

  • Shen L, Worrell E, Patel M (2010) Present and future development in plastics from biomass. Biofuels Bioprod Biorefin 4:25–40

    Article  Google Scholar 

  • Souza MS, Victoria RL, Joly CA, Verdade LM (eds) (2015) Bioenergy & sustainability: bridging the gaps. SCOPE, Paris

    Google Scholar 

  • Spokas KA (2014) Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Management 1:289–303

    Article  Google Scholar 

  • Sun Z, Cheng J, Wang D, Yuan TQ, Song G, Barta K (2020) Downstream processing strategies for lignin-first biorefinery. ChemSusChem 13:5199–5212

    Article  Google Scholar 

  • van Ree R, Annevelink B (2007) Status report biorefinery 2007. Wageningen, Netherlands. www.afsg.wur.nl%0Awww.biorefinery.nl

    Google Scholar 

  • Wang H, Pu Y, Ragauskas A, Yang B (2019) From lignin to valuable products-strategies, challenges, and prospects. Bioresour Technol 271:449–461

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Jacob Corrêa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corrêa, L.J., Campani, G., Furlong, V.B. (2022). Principles, Concepts, and Recent Trends Applied to the Waste Biorefineries. In: Jacob-Lopes, E., Queiroz Zepka, L., Costa Deprá, M. (eds) Handbook of Waste Biorefinery. Springer, Cham. https://doi.org/10.1007/978-3-031-06562-0_1

Download citation

Publish with us

Policies and ethics