Skip to main content

DASP: Dual-autoencoder Architecture for Skin Prediction

  • Conference paper
  • First Online:
Book cover Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Abstract

This paper introduces a novel human skin detection approach based on the application of a dual autoencoder architecture, composed of models to detect background and skin zones concomitantly. This method, named Dual-Autoencoder Skin Predictor (DASP), associates the outputs of two autoencoders through a composite loss that minimizes the error between predicted skin/background areas and the groundtruth. More importantly, the composite loss penalizes overlapping zones between autoencoders predictions, leading our approach to better capture fine-grained and complementary information between skin and background. To combine semantic information with the skin color distribution, heavily tackled by handcrafted skin detection methods, our architecture relies on a main input that considers multiple colorspaces. Besides, a secondary input provides a standard skin/background patch vector to the model, granting information regarding their color distribution. Our experiments support the accurate performance of the proposed architecture and highlights the contributions of the composite loss and multiple inputs. For instance, DASP achieves the best and the second best results on Pratheepan and Mutual Guidance datasets, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source code and trained models are available at github.com/igorcrexito/skin detector.

References

  1. Arsalan, M., Kim, D., Owais, M., Park, K.: Or-skip-net: outer residual skip network for skin segmentation in non-ideal situations. Expert Syst. Appl. 141 (2020)

    Google Scholar 

  2. Baldissera, D., Nanni, L., Brahnam, S., Lumini, A.: Postprocessing for skin detection. J. Imaging 7 (2021)

    Google Scholar 

  3. Bastos, I.L.O., Angelo, M.F., Loula, A.C.: Recognition of static gestures applied to Brazilian sign language (libras). In: 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images, pp. 305–312 (2015)

    Google Scholar 

  4. Bastos, I.L.O., Melo, V.H.C., Schwartz, W.R.: Bubblenet: a disperse recurrent structure to recognize activities. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 2216–2220 (2020)

    Google Scholar 

  5. Bastos, I.L.O., Soares, L.R., Schwartz, W.R.: Pyramidal Zernike over time: a spatiotemporal feature descriptor based on Zernike moments. In: Mendoza, M., Velastín, S. (eds.) CIARP 2017. LNCS, vol. 10657, pp. 77–85. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75193-1_10

    Chapter  Google Scholar 

  6. Casati, J., Moraes, D., Rodrigues, E.: SFA: a human skin image database based on feret and AR facial images. In: IX Workshop de Visão Computacional (2013)

    Google Scholar 

  7. Chen, L., Zhou, J., Liu, Z., Chen, W., Xiong, G.: A skin detector based on neural network. In: IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions, vol. 1, pp. 615–619 (2002)

    Google Scholar 

  8. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  9. Dawod, A., Abdullah, J., Alam, M.: Adaptive skin color model for hand segmentation. In: 2010 International Conference on Computer Applications and Industrial Electronics, pp. 486–489 (12 2010)

    Google Scholar 

  10. Dhantre, P., Prasad, R., Saurabh, P., Verma, B.: A hybrid approach for human skin detection. In: 2017 7th International Conference on Communication Systems and Network Technologies (CSNT), pp. 142–146 (2017)

    Google Scholar 

  11. Hajiarbabi, M., Agah, A.: Human skin color detection using neural networks. J. Intell. Syst. 24(4), 425–436 (2015)

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (June 2016)

    Google Scholar 

  13. He, Y., et al.: Semi-supervised skin detection by network with mutual guidance. In: The IEEE International Conference on Computer Vision (ICCV) (October 2019)

    Google Scholar 

  14. Jones, M., Rehg, J.: Statistical color models with application to skin detection. In: Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), vol. 1, pp. 274–280 (1999)

    Google Scholar 

  15. Kovac, J., Peer, P., Solina, F.: Human skin color clustering for face detection. In: IEEE EUROCON 2003. Computer as a Tool, vol. 2, pp. 144–148 (2003)

    Google Scholar 

  16. Li, L., Jamieson, K.G., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Efficient hyperparameter optimization and infinitely many armed bandits. CoRR abs/1603.06560 (2016)

    Google Scholar 

  17. Liu, L., Mou, L., Zhu, X., Mandal, M.: Skin lesion segmentation based on improved u-net. In: 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), pp. 1–4 (2019)

    Google Scholar 

  18. Micilotta, A., Bowden, R.: View-based location and tracking of body parts for visual interaction. In: BMVC (2004)

    Google Scholar 

  19. Minhas, K., et al.: Accurate pixel-wise skin segmentation using shallow fully convolutional neural network. IEEE Access 8, 156314–156327 (2020)

    Article  Google Scholar 

  20. Peer, P., Solina, F.: An automatic human face detection method. In: Proceedings of the 4th Computer Vision Winter Workshop (CVWW 1999) (December 1999)

    Google Scholar 

  21. Phung, S.L., Bouzerdoum, A., Chai, D.: Skin segmentation using color pixel classification: analysis and comparison. IEEE Trans. Pattern Anal. Mach. Intell. 27(1), 148–154 (2005)

    Article  Google Scholar 

  22. Rahmat, R., Chairunnisa, T., Gunawan, D., Sitompul, O.: Skin color segmentation using multi-color space threshold. In: 2016 3rd International Conference on Computer and Information Sciences (ICCOINS) (August 2016)

    Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Senior, A., Hsu, R.L., Mottaleb, M.A., Jain, A.K.: Face detection in color images. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 696–706 (2002)

    Article  Google Scholar 

  25. Sigal, L., Sclaroff, S., Athitsos, V.: Skin color-based video segmentation under time-varying illumination. Trans. Patt. Anal. Mach. Intell. 26(7), 862–877 (2004)

    Google Scholar 

  26. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (June 2015)

    Google Scholar 

  27. Tan, W., Chan, C., Yogarajah, P., Condell, J.: A fusion approach for efficient human skin detection. IEEE Trans. Ind. Inform. 8(1), 138–147 (2012)

    Article  Google Scholar 

  28. Tarasiewicz, T., Nalepa, J., Kawulok, M.: Skinny: a lightweight u-net for skin detection and segmentation. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 2386–2390 (2020)

    Google Scholar 

  29. Uemori, T., Ito, A., Moriuchi, Y., Gatto, A., Murayama, J.: Skin-based identification from multispectral image data using CNNS. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019)

    Google Scholar 

  30. Wenjun, T., Gaoyang, D., Han, S., Ziyi, F.: Gesture segmentation based on YCb’Cr’ color space ellipse fitting skin color modeling. In: 2012 24th Chinese Control and Decision Conference (CCDC), pp. 1905–1908 (2012)

    Google Scholar 

  31. Wu, H., Pan, J., Li, Z., Wen, Z., Qin, J.: Automated skin lesion segmentation via an adaptive dual attention module. Trans. Med. Imaging 40(1), 357–370 (2021)

    Article  Google Scholar 

  32. Wu, Q., Cai, R., Fan, L., Ruan, C., Leng, G.: Skin detection using color processing mechanism inspired by the visual system. In: IET Conference on Image Processing (IPR 2012), pp. 1–5 (January 2012)

    Google Scholar 

  33. Yang, J., Sun, X., Liang, J., Rosin, P.L.: Clinical skin lesion diagnosis using representations inspired by dermatologist criteria. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2018)

    Google Scholar 

  34. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, pp. 4320–4328 (2018)

    Google Scholar 

  35. Zuo, H., Fah, H., Blasch, E., Ling, H.: Combining convolutional and recurrent neural networks for human skin detection. Signal Process. Lett. 24(3), 289–293 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the National Council for Scientific and Technological Development – CNPq (Grant 309953/2019-7) and the Minas Gerais Research Foundation – FAPEMIG (Grant PPM-00540-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor L. O. Bastos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

O. Bastos, I.L., C. Melo, V.H., Prates, R.F., Schwartz, W.R. (2022). DASP: Dual-autoencoder Architecture for Skin Prediction. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13232. Springer, Cham. https://doi.org/10.1007/978-3-031-06430-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06430-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06429-6

  • Online ISBN: 978-3-031-06430-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics