Skip to main content

Home Sleep Testing of Sleep Apnea

  • Chapter
  • First Online:
Advances in the Diagnosis and Treatment of Sleep Apnea

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1384))

  • 1438 Accesses

Abstract

Measurement methods with graded complexity for use in the lab as well as for home sleep testing (HST) are available for the diagnosis of sleep apnea, and there are different classification systems in existence. Simplified HST measurements, which record fewer parameters than traditional four- to six-channel devices, can indicate sleep apnea and can be used as screening tool in high-prevalence patient groups. Peripheral arterial tonometry (PAT) is a technique which can be suitable for the diagnosis of sleep apnea in certain cases. Different measurement methods are used, which has an influence on the significance of the results. New minimal-contact and non-contact technologies of recording and analysis of surrogate parameters are under development. If they are validated by clinical studies, it will be possible to detect sleep apnea in need of treatment more effectively. In addition, this could become a solution to monitor the effectiveness of such treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literature

  • Stuck, B. A., Arzt, M., Fietze, I., et al. (2020). Partial update of the German S3 guideline sleep-related breathing disorders in adults. Somnologie, 24, 176–208.

    Google Scholar 

  • Chesson, A. L., Berry, R. B., & Pack, A. (2003). Practice parameters for the use of portable monitoring devices in the investigation of suspected obstructive sleep apnea in adults. Sleep, 26, 907–913.

    PubMed  Google Scholar 

  • Berry, R. B., Quan, S. F., Abreu, A. R., et al. (2020). The AASM manual for the scoring of sleep and associated events: Rules, terminology, and technical specification. Version 2.6. American Academy of Sleep Medicine.

    Google Scholar 

  • Collop, N. A., Tracy, S. L., Kapur, V., et al. (2011). Obstructive sleep apnea devices for out-of-center (OOC) testing: Technology evaluation. Journal of Clinical Sleep Medicine, 7, 531–548.

    PubMed  PubMed Central  Google Scholar 

  • Kapur, V. K., Auckley, D. H., Chowdhuri, S., et al. (2017). Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. Journal of Clinical Sleep Medicine, 13, 479–504.

    PubMed  PubMed Central  Google Scholar 

  • Mayer, G., Arzt, M., Braumann, B., et al. (2017). German S3 guideline nonrestorative sleep/sleep disorders, chapter “Sleep-Related Breathing Disorders in Adults,” short version. Somnologie, 21, 290–301.

    PubMed  PubMed Central  Google Scholar 

  • Escourrou, P., Grote, L., Penzel, T., et al. (2015). The diagnostic method has a strong influence on classification of obstructive sleep apnea. Journal of Sleep Research, 24, 730–738.

    PubMed  Google Scholar 

  • Berry, R. B., Budhiraja, R., Gottlieb, D. J., et al. (2012). Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. Journal of Clinical Sleep Medicine, 8, 597–619.

    PubMed  PubMed Central  Google Scholar 

  • Caples, S. M., Rosen, C. L., Shen, W. K., et al. (2007). The scoring of cardiac events during sleep. Journal of Clinical Sleep Medicine, 3, 147–154.

    PubMed  Google Scholar 

  • Penzel, T., Kesper, K., Pinnow, I., et al. (2004). Peripheral arterial tonometry, oximetry and actigraphy for ambulatory recording of sleep apnea. Physiological Measurement, 25, 1025–1036.

    PubMed  Google Scholar 

  • Schöbel, C., Knorre, S., Glos, M., et al. (2018). Improved follow-up by peripheral arterial tonometry in CPAP-treated patients with obstructive sleep apnea and persistent excessive daytime sleepiness. Sleep & Breathing, 22, 1153–1160.

    Google Scholar 

  • Yalamanchali, S., Farajian, V., Hamilton, C., et al. (2013). Diagnosis of obstructive sleep apnea by peripheral arterial tonometry: meta-analysis. JAMA Otolaryngology–Head and Neck Surgery, 139, 1343–1350.

    Google Scholar 

  • Oldenburg, O., Arzt, M., Bitter, T., et al. (2015). Position paper “Sleep medicine in cardiology”. Der Kardiologe, 9, 140–158.

    Google Scholar 

  • Penzel, T., Fietze, I., & Glos, M. (2020). Alternative algorithms and devices in sleep apnoea diagnosis: what we know and what we expect. Current Opinion in Pulmonary Medicine, 26, 650–656.

    PubMed  PubMed Central  Google Scholar 

  • Dawson, A., Loving, R. T., Gordon, R. M., et al. (2015). Type III home sleep testing versus pulse oximetry: is the respiratory disturbance index better than the oxygen desaturation index to predict the apnoea-hypopnoea index measured during laboratory polysomnography? BMJ Open, 5, e007956.

    PubMed  PubMed Central  Google Scholar 

  • Fietze, I., Dingli, K., Diefenbach, K., et al. (2004). Night-to-night variation of the oxygen desaturation index in sleep apnoea syndrome. The European Respiratory Journal, 24, 987–993.

    CAS  PubMed  Google Scholar 

  • Wang, N., Meng, Z., Ding, N., et al. (2020). Oxygen desaturation rate as a novel intermittent hypoxemia parameter in severe obstructive sleep apnea is strongly associated with hypertension. Journal of Clinical Sleep Medicine, 16, 1055–1062.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, S., Meng, Z., Zhang, X., et al. (2020). The rate of decrease in oxygen desaturation during severe obstructive sleep apnea syndrome is correlated with subjective excessive daytime sleepiness. Sleep & Breathing.

    Google Scholar 

  • Sommermeyer, D., Zou, D., Ficker, J. H., et al. (2016). Detection of cardiovascular risk from a photoplethysmographic signal using a matching pursuit algorithm. Medical & Biological Engineering & Computing, 54, 1111–1121.

    Google Scholar 

  • Pielmus, A. G., Mühlstef, J., Bresch, E., et al. (2021). Surrogate based continuous noninvasive blood pressure measurement. Biomedizinische Technik. Biomedical Engineering, 66, 231–245.

    PubMed  Google Scholar 

  • Gehring, J., Gesche, H., Drewniok, G., et al. (2018). Nocturnal blood pressure fluctuations measured by using pulse transit time in patients with severe obstructive sleep apnea syndrome. Sleep & Breathing, 22, 337–343.

    Google Scholar 

  • Crowley, K. E., Rajaratnam, S. M., Shea, S. A., et al. (2013). Evaluation of a single-channel nasal pressure device to assess obstructive sleep apnea risk in laboratory and home environments. Journal of Clinical Sleep Medicine, 9, 109–116.

    PubMed  PubMed Central  Google Scholar 

  • Keshavarzi, F., Mehdizadeh, S., Khazaie, H., et al. (2018). Objective assessment of obstructive sleep apnea in normal pregnant and preeclamptic women. Hypertension in Pregnancy, 37, 154–159.

    PubMed  Google Scholar 

  • Penzel, T., Kantelhardt, J. W., Bartsch, R. P., et al. (2016). Modulations of heart rate, ECG, and cardio-respiratory coupling observed in polysomnography. Frontiers in Physiology, 7, 460.

    PubMed  PubMed Central  Google Scholar 

  • De Chazal, P., Heneghan, C., & Mcnicholas, W. T. (2009). Multimodal detection of sleep apnoea using electrocardiogram and oximetry signals. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 367, 369–389.

    PubMed  Google Scholar 

  • Fontana, P., Martins, N. R. A., Camenzind, M., et al. (2019). Applicability of a textile ECG-belt for unattended sleep apnoea monitoring in a home setting. Sensors (Basel), 19, 3367.

    PubMed  Google Scholar 

  • Mueller, A., Fietze, I., Voelker, R., et al. (2006). Screening for sleep-related breathing disorders by transthoracic impedance recording integrated into a Holter ECG system. Journal of Sleep Research, 15, 455–462.

    PubMed  Google Scholar 

  • Chen, R., Chen, K., Dai, Y., et al. (2019). Utility of transthoracic impedance and novel algorithm for sleep apnea screening in pacemaker patient. Sleep & Breathing, 23, 741–746.

    Google Scholar 

  • Defaye, P., Mendelson, M., Tamisier, R., et al. (2019). Validation of an apnea and hypopnea detection algorithm implemented in implantable cardioverter defibrillators. The AIRLESS study. Scientific Reports, 9, 9597.

    PubMed  PubMed Central  Google Scholar 

  • Dias, M., Gonçalves, I., Amann, B., et al. (2017). Utility of new-generation pacemakers in sleep apnea screening. Sleep Medicine, 37, 27–31.

    PubMed  Google Scholar 

  • Glos, M., Sabil, A., Jelavic, K. S., et al. (2019). Tracheal sound analysis for detection of sleep disordered breathing. Somnologie, 23, 80–85.

    Google Scholar 

  • Sabil, A., Schobel, C., Glos, M., et al. (2019). Apnea and hypopnea characterization using esophageal pressure, respiratory inductance plethysmography, and suprasternal pressure: a comparative study. Sleep & Breathing, 23, 1169–1176.

    Google Scholar 

  • Narayan, S., Shivdare, P., Niranjan, T., et al. (2019). Noncontact identification of sleep-disturbed breathing from smartphone-recorded sounds validated by polysomnography. Sleep & Breathing, 23, 269–279.

    Google Scholar 

  • Tiron, R., Lyon, G., Kilroy, H., et al. (2020). Screening for obstructive sleep apnea with novel hybrid acoustic smartphone app technology. Journal of Thoracic Disease, 12, 4476–4495.

    PubMed  PubMed Central  Google Scholar 

  • Tenhunen, M., Elomaa, E., Sistonen, H., et al. (2013). Emfit movement sensor in evaluating nocturnal breathing. Respiratory Physiology & Neurobiology, 187, 183–189.

    Google Scholar 

  • Perez-Macias, J. M., Tenhunen, M., Varri, A., et al. (2018). Detection of snores using source separation on an emfit signal. IEEE Journal of Biomedical and Health Informatics, 22, 1157–1167.

    PubMed  Google Scholar 

  • Paalasmaa, J., Toivonen, H., & Partinen, M. (2015). Adaptive heartbeat modeling for beat-to-beat heart rate measurement in ballistocardiograms. IEEE Journal of Biomedical and Health Informatics, 19, 1945–1952.

    PubMed  Google Scholar 

  • Fino, E., & Mazzetti, M. (2019). Monitoring healthy and disturbed sleep through smartphone applications: a review of experimental evidence. Sleep & Breathing, 23, 13–24.

    Google Scholar 

  • Weinreich, G., Terjung, S., Wang, Y., et al. (2014). Validierung von SleepMinder® als Screeninggerät für die obstruktive Schlafapnoe. Somnologie, 18, 238–242.

    Google Scholar 

  • Coronel, C., Wiesmeyr, C., Garn, H., et al. (2019). Measurement of respiratory effort in sleep by 3D camera and respiratory inductance plethysmography. Somnologie, 23, 86–92.

    Google Scholar 

  • Veauthier, C., Ryczewski, J., Mansow-Model, S., et al. (2019). Contactless recording of sleep apnea and periodic leg movements by nocturnal 3-D-video and subsequent visual perceptive computing. Scientific Reports, 9, 16812.

    PubMed  PubMed Central  Google Scholar 

  • Crinion, S. J., Tiron, R., Lyon, G., et al. (2020). Ambulatory detection of sleep apnea using a non-contact biomotion sensor. Journal of Sleep Research, 29, e12889.

    PubMed  Google Scholar 

  • Savage, H. O., Khushaba, R. N., Zaffaroni, A., et al. (2016). Development and validation of a novel non-contact monitor of nocturnal respiration for identifying sleep-disordered breathing in patients with heart failure. ESC Heart Fail, 3, 212–219.

    PubMed  PubMed Central  Google Scholar 

  • Glos, M. T. D., & Schöbel, C. (2021). Sleep apnea screening using simplified systems. Somnologie, 25, 155–165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Glos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glos, M., Triché, D. (2022). Home Sleep Testing of Sleep Apnea. In: Penzel, T., Hornero, R. (eds) Advances in the Diagnosis and Treatment of Sleep Apnea . Advances in Experimental Medicine and Biology, vol 1384. Springer, Cham. https://doi.org/10.1007/978-3-031-06413-5_9

Download citation

Publish with us

Policies and ethics