Skip to main content

Retinal Vessel Segmentation Using Multi-scale Generative Adversarial Network with Class Activation Mapping

  • Conference paper
  • First Online:
Wireless Mobile Communication and Healthcare (MobiHealth 2021)

Abstract

Retinal vessel segmentation plays a significant role in the accurate diagnosis of retinal diseases. However, existing methods commonly omit micro-vessels in retinal images and generate some false-positive vessels. To alleviate this issue, we propose a multi-scale generative adversarial network with class activation mapping to achieve efficient segmentation. For the problem of small amount of data, we introduce a novel data augmentation method, which can generate multiple samples by cutting pixels from other samples. This method increases the diversity of samples and improve the robustness of the model. We compare our method with previous models with several metrics, and experiments show the superiority and effectiveness of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azzopardi, G., Strisciuglio, N., Vento, M., Petkov, N.: Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 19(1), 46–57 (2015)

    Article  Google Scholar 

  2. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  3. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: ICLR (2019)

    Google Scholar 

  4. Budai, A., Bock, R., Maier, A., Hornegger, J., Michelson, G.: Robust vessel segmentation in fundus images. Int. J. Biomed. Imaging (2013)

    Google Scholar 

  5. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging 8(3), 263–269 (1989)

    Article  Google Scholar 

  6. Chen, Y.: A labeling-free approach to supervising deep neural networks for retinal blood vessel segmentation. arXiv preprint arXiv:1704.07502 (2017)

  7. Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012)

    Article  Google Scholar 

  8. Goodfellow, I.J., et al.: Generative adversarial nets. In: NeurIPS, pp. 2672–2680 (2014)

    Google Scholar 

  9. Hu, K., et al.: Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 309, 179–191 (2018)

    Article  Google Scholar 

  10. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (ToG) 36(4), 1–14 (2017)

    Article  Google Scholar 

  11. Kitaev, N., Kaiser, L., Levskaya, A.: Reformer: the efficient transformer. In: ICLR (2020)

    Google Scholar 

  12. Kovács, G., Hajdu, A.: A self-calibrating approach for the segmentation of retinal vessels by template matching and contour reconstruction. Med. Image Anal. 29, 24–46 (2016)

    Article  Google Scholar 

  13. Kumar, S., Moni, R., Rajeesh, J.: Automatic liver and lesion segmentation: a primary step in diagnosis of liver diseases. SIViP 7(1), 163–172 (2013). https://doi.org/10.1007/s11760-011-0223-y

    Article  Google Scholar 

  14. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  15. Moghimirad, E., Rezatofighi, S.H., Soltanian-Zadeh, H.: Retinal vessel segmentation using a multi-scale medialness function. Comput. Biol. Med. 42(1), 50–60 (2012)

    Article  Google Scholar 

  16. Noh, K.J., Park, S.J., Lee, S.: Scale-space approximated convolutional neural networks for retinal vessel segmentation. Comput. Methods Programs Biomed. 178, 237–246 (2019)

    Article  Google Scholar 

  17. Owen, C.G., et al.: Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program. Invest. Ophthal. Vis. Sci. 50(5), 2004–2010 (2009)

    Article  Google Scholar 

  18. Palomera-Perez, M.A., Martinez-Perez, M.E., Benitez-Perez, H., Ortega-Arjona, J.L.: Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE Trans. Inf. Technol. Biomed. 14(2), 500–506 (2009)

    Article  Google Scholar 

  19. Park, K.B., Choi, S.H., Lee, J.Y.: M-GAN: retinal blood vessel segmentation by balancing losses through stacked deep fully convolutional networks. IEEE Access 8, 146308–146322 (2020)

    Article  Google Scholar 

  20. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2016)

    Google Scholar 

  21. Rahebi, J., Hardalaç, F.: Retinal blood vessel segmentation with neural network by using gray-level co-occurrence matrix-based features. J. Med. Syst. 38(8), 1–12 (2014). https://doi.org/10.1007/s10916-014-0085-2

    Article  Google Scholar 

  22. Rao, H., et al.: A self-supervised gait encoding approach with locality-awareness for 3d skeleton based person re-identification. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  23. Rao, H., Xu, S., Hu, X., Cheng, J., Hu, B.: Augmented skeleton based contrastive action learning with momentum LSTM for unsupervised action recognition. Inf. Sci. 569, 90–109 (2021)

    Article  Google Scholar 

  24. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  25. Tan, W.R., Chan, C.S., Aguirre, H.E., Tanaka, K.: ArtGan: artwork synthesis with conditional categorical GANs. In: ICIP, pp. 3760–3764 (2017)

    Google Scholar 

  26. Teng, T., Lefley, M., Claremont, D.: Progress towards automated diabetic ocular screening: a review of image analysis and intelligent systems for diabetic retinopathy. Med. Biol. Eng. Compu. 40(1), 2–13 (2002). https://doi.org/10.1007/BF02347689

    Article  Google Scholar 

  27. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In: ICCV, pp. 4809–4817 (2017)

    Google Scholar 

  28. Tulyakov, S., Liu, M., Yang, X., Kautz, J.: Mocogan: Decomposing motion and content for video generation. In: CVPR, pp. 1526–1535 (2018)

    Google Scholar 

  29. Wang, P.: Linear attention transformer (2020). https://github.com/lucidrains/linear-attention-transformer

  30. Wang, S., Yin, Y., Cao, G., Wei, B., Zheng, Y., Yang, G.: Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing 149, 708–717 (2015)

    Article  Google Scholar 

  31. Wang, Y., Ji, G., Lin, P., Trucco, E.: Retinal vessel segmentation using multiwavelet kernels and multiscale hierarchical decomposition. Pattern Recogn. 46(8), 2117–2133 (2013)

    Article  Google Scholar 

  32. Wu, C., Zou, Y., Yang, Z.: U-Gan: generative adversarial networks with u-net for retinal vessel segmentation. In: 2019 14th International Conference on Computer Science and Education (ICCSE), pp. 642–646. IEEE (2019)

    Google Scholar 

  33. Xu, S., et al.: Attention based multi-level co-occurrence graph convolutional LSTM for 3D action recognition. IEEE Internet Things J. (2020)

    Google Scholar 

  34. Yang, T., Wu, T., Li, L., Zhu, C.: SUD-GAN: deep convolution generative adversarial network combined with short connection and dense block for retinal vessel segmentation. J. Digit. Imaging 33(4), 946–957 (2020). https://doi.org/10.1007/s10278-020-00339-9

    Article  Google Scholar 

  35. Yap, M.H., et al.: Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J. Biomed. Health Inform. 22(4), 1218–1226 (2017)

    Article  Google Scholar 

  36. Yin, Y., Adel, M., Bourennane, S.: Retinal vessel segmentation using a probabilistic tracking method. Pattern Recogn. 45(4), 1235–1244 (2012)

    Article  Google Scholar 

  37. Yu, H., Barriga, S., Agurto, C., Zamora, G., Bauman, W., Soliz, P.: Fast vessel segmentation in retinal images using multi-scale enhancement and second-order local entropy. In: Medical imaging 2012: computer-aided diagnosis, vol. 8315, p. 83151B. International Society for Optics and Photonics (2012)

    Google Scholar 

  38. Zhang, J., Li, H., Nie, Q., Cheng, L.: A retinal vessel boundary tracking method based on Bayesian theory and multi-scale line detection. Comput. Med. Imaging Graph. 38(6), 517–525 (2014)

    Article  Google Scholar 

  39. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  40. Zhao, Y., Rada, L., Chen, K., Harding, S.P., Zheng, Y.: Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans. Med. Imaging 34(9), 1797–1807 (2015)

    Article  Google Scholar 

  41. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Key Research and Development Program of China (Grant No. 2019YFA0706200), in part by the National Natural Science Foundation of China (Grant No. 61632014, No. 61627808, No. 61802159), in part by Fundamental Research Funds for Central Universities (lzujbky-2019-26).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiping Hu or Bin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, M., Ye, Y., Ye, K., Hu, X., Hu, B. (2022). Retinal Vessel Segmentation Using Multi-scale Generative Adversarial Network with Class Activation Mapping. In: Gao, X., Jamalipour, A., Guo, L. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 440. Springer, Cham. https://doi.org/10.1007/978-3-031-06368-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06368-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06367-1

  • Online ISBN: 978-3-031-06368-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics