Skip to main content

Co-Utilization of Slag By-products from Steel Industries in Sustainable Concrete

  • Conference paper
  • First Online:
Environmental Concerns and Remediation

Abstract

The global consumption of natural aggregates and cement is rising at an alarming rate due to the vast growing in construction industry. At the same time, the steel industries are generating large amounts of by-products in the form of electric arc furnace (EAF) slag, ladle furnace (LF) slag and ground granulated blast furnace slag (GGBS). These slag by-products can potentially be reused and utilized as partial substitute of the common constituent materials in concrete such as the aggregates and cement. This chapter thus investigates the influence of using the local EAF and LF slags as 40% aggregate replacement along with the GGBS at 25% cement replacement in concrete. The results demonstrated that improvement in the properties of concrete (such as compressive strength, water absorption, surface resistivity and mass changes) can be achieved with EAF slag as partial coarse aggregate replacement, and these properties can be further enhanced with the use of GGBS. This points towards potential of the co-utilization of the EAF slag and GGBS in a sustainable concrete mixture to maximize the use of these industrial by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.K. Anastasiou, A. Liapis, M. Papachristoforou, Life cycle assessment of concrete products for special applications containing EAF slag. Proc. Environ. Sci. 38, 469–476 (2017). https://doi.org/10.1016/j.proenv.2017.03.138

    Article  Google Scholar 

  2. European Aggregates Association, Current trends for the European Aggregates Sector, 2017. http://www.uepg.eu/statistics/current-trends

  3. C.C. Onn, K.H. Mo, M.K.H. Radwan, W.H. Liew, C.G. Ng, S. Yusoff, Strength, carbon footprint and cost considerations of mortar blends with high volume ground granulated blast furnace slag. Sustainability 11, 7194 (2019). https://doi.org/10.3390/su11247194

    Article  CAS  Google Scholar 

  4. M.K.H. Radwan, C.C. Onn, K.H. Mo, S.P. Yap, R.J. Chin, S.H. Lai, Sustainable ternary cement blends with high-volume ground granulated blast furnace slag–fly ash. Environ. Dev. Sustain. (2021). https://doi.org/10.1007/s10668-021-01633-4

  5. Y.-X. Liu, T.-C. Ling, K.-H. Mo, Progress in developing self-consolidating concrete (SCC) constituting recycled concrete aggregates: A review. Int. J. Miner. Metall. Mater. 28, 522–537 (2021). https://doi.org/10.1007/s12613-020-2060-x

    Article  CAS  Google Scholar 

  6. S.N. Shah, K.H. Mo, S.P. Yap, A. Putra, M.N. Othman, Assessment of lightweight recycled crumb rubber – cement composite produced by preplaced method. Adv. Concr. Constr. 11, 409–417 (2021). https://doi.org/10.12989/acc.2021.11.5.409

    Article  Google Scholar 

  7. K.H. Mo, U.J. Alengaram, M.Z. Jumaat, S.P. Yap, S.C. Lee, Green concrete partially comprised of farming waste residues: A review. J. Clean. Prod. 117, 122–138 (2016). https://doi.org/10.1016/j.jclepro.2016.01.022

    Article  CAS  Google Scholar 

  8. K.H. Mo, B.S. Thomas, S.P. Yap, F. Abutaha, C.G. Tan, Viability of agricultural wastes as substitute of natural aggregate in concrete: A review on the durability-related properties. J. Clean. Prod. 275, 123062 (2020). https://doi.org/10.1016/j.jclepro.2020.123062

    Article  CAS  Google Scholar 

  9. S.N. Shah, K.H. Mo, S.P. Yap, J. Yang, T.C. Ling, Lightweight foamed concrete as a promising avenue for incorporating waste materials: A review. Resour. Conserv. Recycl. 164 (2021). https://doi.org/10.1016/j.resconrec.2020.105103

  10. A.N. Conejo, J.P. Birat, A. Dutta, A review of the current environmental challenges of the steel industry and its value chain. J. Environ. Manag. 259, 109782 (2020). https://doi.org/10.1016/j.jenvman.2019.109782

    Article  Google Scholar 

  11. P. Wang, M. Ryberg, Y. Yang, K. Feng, S. Kara, M. Hauschild, W.Q. Chen, Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts. Nat. Commun. 12, 1–11 (2021). https://doi.org/10.1038/s41467-021-22245-6

    Article  CAS  Google Scholar 

  12. K. Horii, N. Tsutsumi, Y. Kitano, T. Kato, Processing and reusing technologies for steelmaking slag, 2013. https://www.nipponsteel.com/en/tech/report/nsc/pdf/104-20.pdf

  13. H. Qasrawi, F. Shalabi, I. Asi, Use of low CaO unprocessed steel slag in concrete as fine aggregate. Constr. Build. Mater. 23, 1118–1125 (2009). https://doi.org/10.1016/j.conbuildmat.2008.06.003

    Article  Google Scholar 

  14. Z. Liu, S. El-Tawil, W. Hansen, F. Wang, Effect of slag cement on the properties of ultra-high performance concrete. Constr. Build. Mater. 190, 830–837 (2018). https://doi.org/10.1016/j.conbuildmat.2018.09.173

    Article  Google Scholar 

  15. Q. Dong, G. Wang, X. Chen, J. Tan, X. Gu, Recycling of steel slag aggregate in Portland cement concrete: An overview. J. Clean. Prod. 282, 124447 (2021). https://doi.org/10.1016/j.jclepro.2020.124447

    Article  CAS  Google Scholar 

  16. F. Han, Z. Zhang, D. Wang, P. Yan, Hydration heat evolution and kinetics of blended cement containing steel slag at different temperatures. Thermochim. Acta 605, 43–51 (2015). https://doi.org/10.1016/j.tca.2015.02.018

    Article  CAS  Google Scholar 

  17. C. Shi, Steel Slag—Its production, processing, characteristics, and cementitious properties. J. Mater. Civ. Eng. 16, 230–236 (2004). https://doi.org/10.1061/(asce)0899-1561(2004)16:3(230)

    Article  CAS  Google Scholar 

  18. N.S. Association, Production and Uses of Steel Slag in Japan, 2014. http://www.slg.jp/pdf/Blast/Furnace/Slag/2017FY/rev.pdf

  19. EUROSLAG, Statistics 2016, 2016. https://www.euroslag.com/wp-content/uploads/2019/01/Statistics-2016.pdf

  20. T. Zhang, Q. Yu, J. Wei, J. Li, P. Zhang, Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag. Resour. Conserv. Recycl. 56, 48–55 (2011). https://doi.org/10.1016/j.resconrec.2011.09.003

    Article  Google Scholar 

  21. M. Maslehuddin, A.M. Sharif, M. Shameem, M. Ibrahim, M.S. Barry, Comparison of properties of steel slag and crushed limestone aggregate concretes. Constr. Build. Mater. 17, 105–112 (2003). https://doi.org/10.1016/S0950-0618(02)00095-8

    Article  Google Scholar 

  22. I. Arribas, A. Santamaría, E. Ruiz, V. Ortega-López, J.M. Manso, Electric arc furnace slag and its use in hydraulic concrete. Constr. Build. Mater. 90, 68–79 (2015). https://doi.org/10.1016/j.conbuildmat.2015.05.003

    Article  Google Scholar 

  23. S. Monosi, M.L. Ruello, D. Sani, Electric arc furnace slag as natural aggregate replacement in concrete production. Cem. Concr. Compos. 66, 66–72 (2016). https://doi.org/10.1016/j.cemconcomp.2015.10.004

    Article  CAS  Google Scholar 

  24. J.M. Manso, J.A. Polanco, M. Losañez, J.J. González, Durability of concrete made with EAF slag as aggregate. Cem. Concr. Compos. 28, 528–534 (2006). https://doi.org/10.1016/j.cemconcomp.2006.02.008

    Article  CAS  Google Scholar 

  25. M. Skaf, V. Ortega-López, J.A. Fuente-Alonso, A. Santamaría, J.M. Manso, Ladle furnace slag in asphalt mixes. Constr. Build. Mater. 122, 488–495 (2016). https://doi.org/10.1016/j.conbuildmat.2016.06.085

    Article  Google Scholar 

  26. E.K. Anastasiou, I. Papayianni, M. Papachristoforou, Behavior of self compacting concrete containing ladle furnace slag and steel fiber reinforcement. Mater. Des. 59, 454–460 (2014). https://doi.org/10.1016/j.matdes.2014.03.030

    Article  CAS  Google Scholar 

  27. Y. Jiang, T.C. Ling, C. Shi, S.Y. Pan, Characteristics of steel slags and their use in cement and concrete—A review. Resour. Conserv. Recycl. 136, 187–197 (2018). https://doi.org/10.1016/j.resconrec.2018.04.023

    Article  Google Scholar 

  28. K.K. Sideris, C. Tassos, A. Chatzopoulos, P. Manita, Mechanical characteristics and durability of self compacting concretes produced with ladle furnace slag. Constr. Build. Mater. 170, 660–667 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.091

    Article  CAS  Google Scholar 

  29. P. Chandru, J. Karthikeyan, A.K. Sahu, K. Sharma, C. Natarajan, Some durability characteristics of ternary blended SCC containing crushed stone and induction furnace slag as coarse aggregate. Constr. Build. Mater. 270, 121483 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121483

    Article  CAS  Google Scholar 

  30. N. Palankar, A.U. Ravi Shankar, B.M. Mithun, Studies on eco-friendly concrete incorporating industrial waste as aggregates. Int. J. Sustain. Built Environ. 4, 378–390 (2015). https://doi.org/10.1016/j.ijsbe.2015.05.002

    Article  Google Scholar 

  31. L. Coppola, A. Buoso, D. Coffetti, P. Kara, S. Lorenzi, Electric arc furnace granulated slag for sustainable concrete. Constr. Build. Mater. 123, 115–119 (2016). https://doi.org/10.1016/j.conbuildmat.2016.06.142

    Article  Google Scholar 

  32. Á. Rodriguez, J.M. Manso, Á. Aragón, J.J. Gonzalez, Strength and workability of masonry mortars manufactured with ladle furnace slag. Resour. Conserv. Recycl. 53, 645–651 (2009). https://doi.org/10.1016/j.resconrec.2009.04.015

    Article  Google Scholar 

  33. S.K. Ong, K.H. Mo, U.J. Alengaram, M.Z. Jumaat, T.C. Ling, Valorization of wastes from power plant, steel-making and palm oil industries as partial sand substitute in concrete. Waste Biomass Valoriz. 9, 1645–1654 (2018). https://doi.org/10.1007/s12649-017-9937-6

    Article  CAS  Google Scholar 

  34. M.K.H. Radwan, C.C. Onn, K.H. Mo, S.P. Yap, C.G. Ng, S. Yusoff, Eco-mechanical performance of binary and ternary cement blends containing fly ash and slag. Proc. Inst. Civ. Eng. Eng. Sustain. 174, 23–36 (2021). https://doi.org/10.1680/jensu.20.00009

    Article  Google Scholar 

  35. S.I. Abu-Eishah, A.S. El-Dieb, M.S. Bedir, Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region. Constr. Build. Mater. 34, 249–256 (2012). https://doi.org/10.1016/j.conbuildmat.2012.02.012

    Article  Google Scholar 

  36. N.H. Roslan, M. Ismail, N.H.A. Khalid, B. Muhammad, Properties of concrete containing electric arc furnace steel slag and steel sludge. J. Build. Eng. 28, 101060 (2020). https://doi.org/10.1016/j.jobe.2019.101060

    Article  Google Scholar 

  37. G. Wang, Y. Wang, Z. Gao, Use of steel slag as a granular material: Volume expansion prediction and usability criteria. J. Hazard. Mater. 184, 555–560 (2010). https://doi.org/10.1016/j.jhazmat.2010.08.071

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful for the financial support provided by the Universiti Malaya under the grant IIRG 002B-2020IISS and ST040-2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Hung Mo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Radwan, M.K.H., Hoo, Y.Z., Yeo, J.S., Onn, C.C., Mo, K.H. (2022). Co-Utilization of Slag By-products from Steel Industries in Sustainable Concrete. In: Ashish, D.K., de Brito, J. (eds) Environmental Concerns and Remediation. Springer, Cham. https://doi.org/10.1007/978-3-031-05984-1_3

Download citation

Publish with us

Policies and ethics