Skip to main content

Normalization Matrix for Sustainability Assessments Considering the Laser Powder Bed Fusion Process

  • Conference paper
  • First Online:
Innovative Product Development by Additive Manufacturing 2021

Abstract

The sustainability assessment of a product and the related process chain is the result of balancing influencing factors. Using different methods, such as life cycle assessment according ISO14040/44, it is possible to determine the ecological impact based on an evaluation of various influencing factors. For being able to identify and validate the potential of laser powder bed fusion process compared to conventional processes, a standardised approach is required. Following the “technical–economic evaluation” as defined in VDI2225 and the basics of the utility value analysis, objectives and evaluation criteria must be established and combined in a methodical approach. In this paper, a possibility to standardise the various influencing factors of additive and conventional manufacturing processes by a developed normalization matrix is presented. The effects of this norming are validated and discussed regarding their applicability based on the process chain of a demonstrator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heijungs, R., Guinée, J., Kleijn, R., Rovers, V. (2007). Bias in normalization: Causes, consequences, detection and remedies. The International Journal of Life Cycle Assessment, 12, 211–216. https://doi.org/10.1065/lca2006.07.260

  2. International Standard Organization. (2021). Umweltmanagement—Ökobilanz—Grundsätze und Rahmenbedingungen (ISO 14040:2006 + Amd 1:2020). Deutsches Institut für Normung e.V. Beuth Verlag GmbH.

    Google Scholar 

  3. Johanning, A., & Scholz, D. (2013). A first step towards the integration of life cycle assessment into conceptual aircraft design. In: Deutscher Luft- und Raumfahrtkongress 2013 (DocumentID: 301347)

    Google Scholar 

  4. Yang, W.-C., Chon, S.-H., Choe, C.-M., & Yang, J.-Y. (2021). Materials selection method using TOPSIS with some popular normalization methods. Engineering Research Express, 3(1). https://doi.org/10.1088/2631-8695/abd5a7 .

  5. Acero, A. P., Rodriquez, C., & Ciroth, A. (2015). LCIA methods: Impact assessment methods in life cycle assessment and their impact categories. Green Delta, openLCA.

    Google Scholar 

  6. Frischknecht, R., & Jolliet, O. (2019). Global guidance on environmental life cycle impact assessment indicators—Volume 2. United Nations Environment Programme. Life Cycle Initiative.

    Google Scholar 

  7. Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Viera, M., Zijp, M., Hollander, A., & van Zelm, R. (2016). ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22, 138–147. https://doi.org/10.1007/s11367-016-1246-y .

  8. Allacker, K., Souza, D., & Sala, S. (2014). Land use impact assessment in the construction sector: an analysis of LCIA models and case study application. The International Journal of Life Cycle Assessment, 19, 1799–1809. https://doi.org/10.1007/s11367-014-0781-7 .

  9. Suarez-Alvarez, M. M., Pham, D.-T., Prostov, M. Y., & Prostov, Y. I. (2012). Statistical approach to normalization of feature vectors and clustering of mixed datasets. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468, 2630–2651. https://doi.org/10.1098/rspa.2011.0704 .

  10. Helias, A., & Servien, R. (2021). Normalisation in LCA: How to ensure consistency?. The International Journal of Life Cycle Assessment, 26, 1117–1122. https://doi.org/10.1007/s11367-021-01897-y .

  11. Pizzol, M., Laurent, A., Sala, S., Weidema, B., Verones, F., & Koffler, C. (2016). Normalisation and weighting in life cycle assessment: quo vadis? The International Journal of Life Cycle Assessment, 22, 853–866. https://doi.org/10.1007/s11367-016-1199-1 .

  12. Myllyviita, T., Leskinen, P., & Seppälä, J. (2014). Impact of normalisation, elicitation technique and background information on panel weighting results in life cycle assessment. The International Journal of Life Cycle Assessment, 19, 377–386. https://doi.org/10.1007/s11367-013-0645-6 .

  13. Prado, V., Wender, B. A., & Seager, T. P. (2017). Interpretation of comparative LCAs: External normalization and a method of mutual differences. The International Journal of Life Cycle Assessment, 22, 2018–2029. https://doi.org/10.1007/s11367-017-1281-3 .

  14. Seel, C., & Loos, P. (2007). Controlling konfigurativer Referenzmodelle. In: J. Becker, P. Delfmann, & T. Rieke (eds.), Effiziente Softwareentwicklung mit Referenzmodellen (pp. 77–106). Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-1994-6_6 .

  15. Lindemann, U. (2016). Handbuch der Produktentwicklung. Hanser. ISBN 978-3-446-44518-9.

    Google Scholar 

  16. Ehlers, T., Wurst, J., & Lachmayer, R. (2020). Bewertung der ökologischen und ökonomischen Nachhaltigkeit in der Additiven Fertigung. In: In Konstruktion für die Additive Fertigung 2019 (pp. 177–199). Springer Vieweg. https://doi.org/10.1007/978-3-662-61149-4_12 .

  17. Benini, L., Mancini, L., Sala, S., Manfredi, S., Schau, E. M., & Pant, R. (2014). Normalisation method and data for Environmental Footprints. In: JRC Technical Reports (Vol. Report EUR 26842 EN). European Commission. Joint Research Centre. Institute for Environment and Sustainability. https://doi.org/10.2788/16415 .

  18. Sleeswijk, A. W., van Oers, L. F. C. M., Guinée, J. B., Struijs, J., & Huijbregts, M. A. J. (2008). Normalisation in product life cycle assessment: an LCA of the global and European economic systems in the year 2000. The Science of the Total Environment, 390, 227–240. https://doi.org/10.1016/j.scitotenv.2007.09.040 .

  19. Benini, L., & Sala, S. (2016). Uncertainty and sensitivity analysis of normalization factors to methodological assumptions. The International Journal of Life Cycle Assessment, 21, 224–236. https://doi.org/10.1007/s11367-015-1013-5 .

Download references

Ackknowledgement

This research has been funded by the Ministry for Science and Culture of Lower Saxony (MWK)—School for Additive Manufacturing SAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Wurst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wurst, J., Mozgova, I., Lachmayer, R. (2023). Normalization Matrix for Sustainability Assessments Considering the Laser Powder Bed Fusion Process. In: Lachmayer, R., Bode, B., Kaierle, S. (eds) Innovative Product Development by Additive Manufacturing 2021. Springer, Cham. https://doi.org/10.1007/978-3-031-05918-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05918-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05917-9

  • Online ISBN: 978-3-031-05918-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics