Skip to main content

Generation of Gut Motor Patterns Through Interactions Between Interstitial Cells of Cajal and the Intrinsic and Extrinsic Autonomic Nervous Systems

  • Conference paper
  • First Online:
The Enteric Nervous System II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1383))

Abstract

The musculature of the gastrointestinal tract is a vast network of collaborating excitable cell types. Embedded throughout are the interstitial cells of Cajal (ICC) intertwined with enteric nerves. ICC sense external stimuli such as distention, mediate nerve impulses to smooth muscle cells, and provide rhythmic excitation of the musculature. Neural circuitry involving both the intrinsic and extrinsic autonomic nervous systems, in collaboration with the ICC, orchestrate an array of motor patterns that serve to provide mixing of content to optimize digestion and absorption, microbiome homeostasis, storage, transit, and expulsion. ICC are specialized smooth muscle cells that generate rhythmic depolarization to the musculature and so provide the means for peristaltic and segmenting contractions. Some motor patterns are purely myogenic, but a neural stimulus initiates most, further depolarizing the primary pacemaker cells and the musculature and/or initiating transient pacemaker activity in stimulus-dependent secondary ICC pacemaker cells. From stomach to rectum, ICC networks rhythmically provideĀ tracks along which contractions advance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pervez M, Ratcliffe E, Parsons SP, Chen J-H, Huizinga JD (2020) The cyclic motor patterns in the human colon. Neurogastroenterol Motil e13807:1ā€“17 https://doi.org/10.1111/nmo.13807.

  2. Bassotti G, Gaburri M (1988) Manometric investigation of high-amplitude propagated contractile activity of the human colon. Am J Phys 255:G660ā€“G664

    CASĀ  Google ScholarĀ 

  3. Bharucha AE, Brookes SJH (2018) Neurophysiologic mechanisms of human large intestinal motility. In: Physiology of the gastrointestinal tract. Elsevier, Amsterdam, pp 517ā€“564

    Google ScholarĀ 

  4. Browning KN, Travagli RA (2014) Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 4:1339ā€“1368

    ArticleĀ  Google ScholarĀ 

  5. Cannon WB (1902) The movements of the intestines studied by means of the Rontgen rays. J Med Res 7:72ā€“75

    CASĀ  Google ScholarĀ 

  6. Choe EK, Moon JS, Moon SB, So IS, Park KJ (2010) Electromechanical characteristics of the human colon in vitro: is there any difference between the right and left colon? Int J Color Dis 25:1117ā€“1126

    ArticleĀ  Google ScholarĀ 

  7. Conklin J, Pimentel M, Soffer E (2009) Color atlas of high resolution manometry. Springer Science & Business Media, New York

    Google ScholarĀ 

  8. De Lorijn F, De Jonge WJ, Wedel T, Vanderwinden JM, Benninga MA, Boeckxstaens GE (2005) Interstitial cells of Cajal are involved in the afferent limb of the rectoanal inhibitory reflex. Gut 54:1107ā€“1113

    ArticleĀ  Google ScholarĀ 

  9. Der-Silaphet T, Malysz J, Hagel S, Arsenault LA, Huizinga JD (1998) Interstitial cells of Cajal direct normal propulsive contractile activity in the mouse small intestine. Gastroenterology 114:724ā€“736

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Dinning PG, Zarate N, Hunt LM, Fuentealba SE, Mohammed SD, Szczesniak MM, Lubowski DZ, Preston SL, Fairclough PD, Lunniss PJ, Scott SM, Cook IJ (2010) Pancolonic spatiotemporal mapping reveals regional deficiencies in, and disorganization of colonic propagating pressure waves in severe constipation. Neurogastroenterol Motil 22:e340ā€“e349

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Gulbransen BD, Bains JS, Sharkey KA (2010) Enteric glia are targets of the sympathetic innervation of the myenteric plexus in the guinea pig distal colon. J Neurosci 30:6801ā€“6809

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Gwynne RM, Bornstein JC (2007) Mechanisms underlying nutrient-induced segmentation in isolated guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol 292:G1162ā€“G1172

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Hall KE, El-Sharkawy TY, Diamant NE (1982) Vagal control of migrating motor complex in the dog. Am J Phys 243:G276ā€“G284

    CASĀ  Google ScholarĀ 

  14. Hirst GD, Dickens EJ, Edwards FR (2002) Pacemaker shift in the gastric antrum of guinea-pigs produced by excitatory vagal stimulation involves intramuscular interstitial cells. J Physiol 541:917ā€“928

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Holst MC, Kelly JB, Powley TL (1997) Vagal preganglionic projections to the enteric nervous system characterized with Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 381:81ā€“100

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Horiguchi K, Komuro T (2000) Ultrastructural observations of fibroblast-like cells forming gap junctions in the W/W(nu) mouse small intestine. J Auton Nerv Syst 80:142ā€“147

    Google ScholarĀ 

  17. Huizinga JD (2017) The role of ICC in interoception (Commentary: Phase amplitude coupling at the organism level: the amplitude of spontaneous alpha rhythm fluctuations varies with the phase of the infra-slow gastric basal rhythm). Front Auton Neurosci:11ā€“102. https://doi.org/10.3389/fnins.2017.00102

  18. Huizinga JD, Chen JH, Zhu YF, Pawelka A, McGinn RJ, Bardakjian BL, Parsons SP, Kunze WA, Wu RY, Bercik P, Khoshdel A, Chen S, Yin S, Zhang Q, Yu Y, Gao Q, Li K, Hu X, Zarate N, Collins P, Pistilli M, Ma J, Zhang R, Chen D (2014) The origin of segmentation motor activity in the intestine. Nat Commun 5:1ā€“11. https://doi.org/10.1038/ncomms4326

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Huizinga JD, Pervez M, Nirmalathasan S, Chen J-H (2021) Characterization of haustral activity in the human colon. Am J Physiol 320:G1067ā€“G1080. https://doi.org/10.1152/ajpgi.00063.2021.

  20. Komuro T (2012) Atlas of interstitial cells of Cajal in the Gastrointestinal tract. Springer. https://doi.org/10.1007/978-94-007-2917-9

  21. Kuizenga MH, Sia TC, Dodds KN, Wiklendt L, Arkwright JW, Thomas A, Brookes SJ, Spencer NJ, Wattchow DA, Dinning PG, Costa M (2015) Neurally mediated propagating discrete clustered contractions superimposed on myogenic ripples in ex vivo segments of human ileum. Am J Physiol Gastrointest Liver Physiol 308:G1ā€“G11

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Pawelka AJ, Huizinga JD (2015) Induction of rhythmic transient depolarizations associated with waxing and waning of slow wave activity in intestinal smooth muscle. Am J Physiol Gastrointest Liver Physiol 308:G427ā€“G433

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Pervez M, Ratcliffe E, Parsons SP, Chen J-H, Huizinga JD (2020) The cyclic motor patterns in the human colon. Neurogastroenterol Motil e13807:1ā€“17. https://doi.org/10.1111/nmo.13807

    ArticleĀ  Google ScholarĀ 

  24. Powley TL (2000) Vagal input to the enteric nervous system. Gut 47 Suppl 4:iv30ā€“iv32; discussion iv36

    CASĀ  Google ScholarĀ 

  25. Powley TL, Wang XY, Fox EA, Phillips RJ, Liu LW, Huizinga JD (2008) Ultrastructural evidence for communication between intramuscular vagal mechanoreceptors and interstitial cells of Cajal in the rat fundus. Neurogastroenterol Motil 20:69ā€“79

    CASĀ  Google ScholarĀ 

  26. Powley TL, Hudson CN, McAdams JL, Baronowsky EA, Phillips RJ (2016) Vagal intramuscular arrays: the specialized mechanoreceptor arbors that innervate the smooth muscle layers of the stomach examined in the rat. J Comp Neurol 524:713ā€“737

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Rae MG, Fleming N, McGregor DB, Sanders KM, Keef KD (1998) Control of motility patterns in the human colonic circular muscle layer by pacemaker activity. J Physiol 510:309ā€“320

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Ramon y Cajal S (1911) Maloine, Paris Histologie du systĆ©me nerveux de lā€™ homme et des vertĆ©brĆ©s

    Google ScholarĀ 

  29. Rao SS, Sadeghi P, Beaty J, Kavlock R, Ackerson K (2001) Ambulatory 24-h colonic manometry in healthy humans. Am J Physiol Gastrointest Liver Physiol 280:G629ā€“G639

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Richter CG, Babo-Rebelo M, Schwartz D, Tallon-Baudry C (2017) Phase-amplitude coupling at the organism level: the amplitude of spontaneous alpha rhythm fluctuations varies with the phase of the infra-slow gastric basal rhythm. NeuroImage 146:951ā€“958

    ArticleĀ  Google ScholarĀ 

  31. Sarna SK, Waterfall WE, Bardakjian BL, Lind JF (1981) Types of human colonic electrical activities recorded postoperatively. Gastroenterology 81:61ā€“70

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Smith-Edwards KM, Edwards BS, Wright CM, Schneider S, Meerschaert KA, Ejoh LL, Najjar SA, Howard MJ, Albers KM, Heuckeroth RO, Davis BM (2021) Sympathetic input to multiple cell types in mouse and human colon produces region-specific responses. Gastroenterology 160:1208ā€“1223.e4

    ArticleĀ  Google ScholarĀ 

  33. Szurszewski JH (1969) A migrating electric complex of canine small intestine. Am J Phys 217:1757ā€“1763

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Taylor I, Duthie HL, Smallwood R, Linkens D (1975) Large bowel myoelectrical activity in man. Gut 16:808ā€“814

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Tinel J (1937) Le systĆØme nerveux vĆ©gĆ©tatif, Masson

    Google ScholarĀ 

  36. Ward SM, Sanders KM (2006) Involvement of intramuscular interstitial cells of Cajal in neuroeffector transmission in the gastrointestinal tract. J Physiol 576:675ā€“682

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Ward SM, Beckett EA, Wang X, Baker F, Khoyi M, Sanders KM (2000) Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J Neurosci 20:1393ā€“1403

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Yanagida H, Yanase H, Sanders KM, Ward SM (2004) Intestinal surgical resection disrupts electrical rhythmicity, neural responses, and interstitial cell networks. Gastroenterology 127:1748ā€“1759

    ArticleĀ  Google ScholarĀ 

  39. Yuan Y, Ali MK, Mathewson KJ, Sharma K, Faiyaz M, Tan W, Parsons SP, Zhang KK, Milkova N, Liu L, Chen J-H, Huizinga JD (2020) Associations between colonic motor patterns and autonomic nervous system activity assessed by high-resolution manometry and concurrent heart rate variability. Front Neurosci 13:1447. https://doi.org/10.3389/fnins.2019.01447

    ArticleĀ  Google ScholarĀ 

  40. Zhu YF, Wang X-Y, Parsons SP, Huizinga JD (2016) Stimulus-induced pacemaker activity in interstitial cells of Cajal associated with the deep muscular plexus of the small intestine (ICC-DMP). Neurogastroenterol Motil. https://doi.org/10.1111/nmo.12808

Download references

Acknowledgements

The work of the Chenā€“Huizinga laboratory is funded by the Canadian Institutes of Health Research, the National Science and Engineering Council of Canada and the Farncombe Family Digestive Health Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan D. Huizinga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huizinga, J.D., Hussain, A., Chen, JH. (2022). Generation of Gut Motor Patterns Through Interactions Between Interstitial Cells of Cajal and the Intrinsic and Extrinsic Autonomic Nervous Systems. In: Spencer, N.J., Costa, M., Brierley, S.M. (eds) The Enteric Nervous System II. Advances in Experimental Medicine and Biology, vol 1383. Springer, Cham. https://doi.org/10.1007/978-3-031-05843-1_19

Download citation

Publish with us

Policies and ethics