Skip to main content

Mechanical Systems for Triboelectric Nanogenerators

  • Living reference work entry
  • First Online:
Handbook of Triboelectric Nanogenerators

Abstract

In our lifetime, there have been many kinds of mechanical transmission and control systems for efficiently utilizing infrastructure such as vehicles, plants, and buildings. In mechanical systems, controlling motion of objects without considering the forces, referred to as kinematics, is critical to optimize systems for harvesting a variety of waste mechanical energies by adjusting their working frequencies, velocities, torques, and moving direction. Particularly, a resonant design in vibrational systems can provide a great solution for the maximum motion of objects at a predetermined frequency, thus resulting in the highest output power from energy harvesters. In this chapter, we investigate kinematic systems and vibrational designs integrated with triboelectric nanogenerators (TENGs). First, we study various kinematic elements such as gear trains, cams, and spiral springs. Each element is critical to control the motion of TENGs, and their assembly can be an optimized system of TENGs for maximizing output power, minimizing energy losses in electrical circuits, and predicting the power production. Second, we examine vibration theory, which can provide resonant designs of vibrational TENGs (V-TENGs). Multidirectional V-TENGs and self-oscillating V-TENGs for harvesting mechanical vibrations, ocean waves, and wind energy are introduced, and resonant system designs are focused on producing the maximum output power from V-TENGs. Finally, we understand that mechanical systems (i.e., kinematic and vibrational designs) integrated with TENGs can be a promising cornerstone for commercializing TENGs in our environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed A, Saadatnia Z, Hassan I, Zi Y, Xi Y, He X, Zu J, Wang ZL (2017) Self-powered wireless sensor node enabled by a duck-shaped triboelectric nanogenerator for harvesting water wave energy. Adv Energy Mater 7(7):1601705

    Article  Google Scholar 

  • Bhatia D, Hwang HJ, Huynh ND, Lee S, Lee C, Nam Y, Kim JG, Choi D (2019) Continuous scavenging of broadband vibrations via omnipotent tandem triboelectric nanogenerators with cascade impact structure. Sci Rep 9:8223

    Article  Google Scholar 

  • Bhatia D, Kim W, Lee S, Kim SW, Choi D (2017) Tandem triboelectric nanogenerators for optimally scavenging mechanical energy with broadband vibration frequencies. Nano Energy 33:515–521

    Article  CAS  Google Scholar 

  • Bhatia D, Lee J, Hwang HJ, Baik JM, Kim S, Choi D (2018) Design of mechanical frequency regulator for predictable uniform power from triboelectric nanogenerators. Adv Energy Mater 8(15):1702667

    Article  Google Scholar 

  • Chen J, Huang Y, Zhang N, Zou H, Liu R, Tao C, Fan X, Wang ZL (2016) Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat Energy 1(10):1–8

    Article  CAS  Google Scholar 

  • Chen SW, Gao CZ, Tang W, Zhu HR, Han Y, Jiang QW, Li T, Cao X, Wang ZL (2015) Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy 14:217–225

    Article  CAS  Google Scholar 

  • Cheng T, Li Y, Wang Y-C, Gao Q, Ma T, Wang ZL (2019) Triboelectric nanogenerator by integrating a cam and a movable frame for ambient mechanical energy harvesting. Nano Energy 60:137–143

    Article  CAS  Google Scholar 

  • Cho S, Yun Y, Jang S, Ra Y, Choi JH, Hwang HJ, Choi D, Choi D (2020) Universal biomechanical energy harvesting from joint movements using a direction-switchable triboelectric nanogenerator. Nano Energy 71:104584

    Article  CAS  Google Scholar 

  • Dong K, Deng J, Ding W, Wang AC, Wang P, Cheng C, Wang YC, Jin L, Gu B, Sun B (2018) Versatile core–sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing. Adv Energy Mater 8(23):1801114

    Article  Google Scholar 

  • Dong K, Deng J, Zi Y, Wang YC, Xu C, Zou H, Ding W, Dai Y, Gu B, Sun B (2017) 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv Mater 29(38):1702648

    Article  Google Scholar 

  • Du XY, Zhao SY, Xing Y, Li NW, Wang JN, Zhang XL, Cao R, Liu YB, Yuan ZQ, Yin YY, Wang ZL, Li CJ (2018) Hybridized nanogenerators for harvesting vibrational energy by triboelectric-piezoelectric-electromagnetic effects. Adv Mater Technol 3(6)

    Google Scholar 

  • Dudem B, Huynh ND, Kim W, Kim DH, Hwang HJ, Choi D, Yu JS (2017) Nanopillar-array architectured PDMS-based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting. Nano Energy 42:269–281

    Article  CAS  Google Scholar 

  • Fan F-R, Lin L, Zhu G, Wu W, Zhang R, Wang ZL (2012a) Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12(6):3109–3114

    Article  CAS  Google Scholar 

  • Fan F-R, Tian Z-Q, Wang ZL (2012b) Flexible triboelectric generator. Nano Energy 1(2):328–334

    Article  CAS  Google Scholar 

  • Fu S, He W, Tang Q, Wang Z, Liu W, Li Q, Shan C, Long L, Hu C, Liu H (2022) An Ultrarobust and high-performance rotational hydrodynamic triboelectric nanogenerator enabled by automatic mode switching and charge excitation. Adv Mater 34(2):2105882

    Article  CAS  Google Scholar 

  • Gatti G, Brennan MJ, Tehrani MG, Thompson DJ (2016) Harvesting energy from the vibration of a passing train using a single-degree-of-freedom oscillator. Mech Syst Signal Process 66–67:785–792

    Article  Google Scholar 

  • Hadas Z, Vetiska V, Singule V, Andrs O, Kovar J, Vetiska J (2012) Energy harvesting from mechanical shocks using a sensitive vibration energy harvester regular paper. Int J Adv Robot Syst 9:225

    Article  Google Scholar 

  • Han KW, Kim JN, Rajabi-Abhari A, Bui VT, Kim JS, Choi D, Oh IK (2021) Long-lasting and steady triboelectric energy harvesting from low-frequency irregular motions using escapement mechanism. Adv Energy Mater 11(4):2002929

    Article  CAS  Google Scholar 

  • Hinchet R, Yoon HJ, Ryu H, Kim MK, Choi EK, Kim DS, Kim SW (2019) Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365(6452):491

    Article  CAS  Google Scholar 

  • Hu Y, Yang J, Jing Q, Niu S, Wu W, Wang ZL (2013) Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester. ACS Nano 7(11):10424–10432

    Article  CAS  Google Scholar 

  • Hwang HJ, Jung Y, Choi K, Kim D, Park J, Choi D (2019a) Comb-structured triboelectric nanogenerators for multi-directional energy scavenging from human movements. Sci Technol Adv Mater 20(1):725–732

    Article  CAS  Google Scholar 

  • Hwang HJ, Kim JS, Kim W, Park H, Bhatia D, Jee E, Chung YS, Kim DH, Choi D (2019b) An ultra-mechanosensitive visco-poroelastic polymer ion pump for continuous self-powering kinematic triboelectric nanogenerators. Adv Energy Mater 9(17):1803786

    Article  Google Scholar 

  • Hwang HJ, Lee Y, Lee C, Nam Y, Park J, Choi D, Kim D (2018) Mesoporous highly-deformable composite polymer for a gapless triboelectric nanogenerator via a one-step metal oxidation process. Micromachines 9(12):656

    Article  Google Scholar 

  • Jiang D, Shi B, Ouyang H, Fan Y, Wang ZL, Chen Z-M, Li Z (2020) A 25-year bibliometric study of implantable energy harvesters and self-powered implantable medical electronics researches. Mater Today Energy 16:100386

    Article  Google Scholar 

  • Kim DY, Kim HS, Kong DS, Choi M, Kim HB, Lee J-H, Murillo G, Lee M, Kim SS, Jung JH (2018) Floating buoy-based triboelectric nanogenerator for an effective vibrational energy harvesting from irregular and random water waves in wild sea. Nano Energy 45:247–254

    Article  CAS  Google Scholar 

  • Kim H, Hwang HJ, Huynh ND, Pham KD, Choi K, Ahn D, Choi D (2021) Magnetic force enhanced sustainability and power of cam-based triboelectric nanogenerator. Research 2021

    Book  Google Scholar 

  • Kim I, Chae Y, Jo S, Kim D (2020) Levitating oscillator-based triboelectric nanogenerator for harvesting from rotational motion and sensing seismic oscillation. Nano Energy 72:104674

    Article  CAS  Google Scholar 

  • Kim JS, Kim J, Kim JN, Ahn J, Jeong JH, Park I, Kim D, Oh IK (2022) Collectively exhaustive hybrid triboelectric nanogenerator based on flow-induced impacting-sliding cylinder for ocean energy harvesting. Adv Energy Mater 12(3):2103076

    Article  CAS  Google Scholar 

  • Kim W, Bhatia D, Jeong S, Choi D (2019a) Mechanical energy conversion systems for triboelectric nanogenerators: kinematic and vibrational designs. Nano Energy 56:307–321

    Article  CAS  Google Scholar 

  • Kim W, Hwang HJ, Bhatia D, Lee Y, Baik JM, Choi D (2016) Kinematic design for high performance triboelectric nanogenerators with enhanced working frequency. Nano Energy 21:19–25

    Article  CAS  Google Scholar 

  • Kim W, Okada T, Park H-W, Kim J, Kim S, Kim S-W, Samukawa S, Choi D (2019b) Surface modification of triboelectric materials by neutral beams. J Mater Chem A 7(43):25066–25077

    Article  CAS  Google Scholar 

  • Kong DS, Han JY, Ko YJ, Park SH, Lee M, Jung JH (2021) A highly efficient and durable kirigami triboelectric nanogenerator for rotational energy harvesting. Energies 14(4):1120

    Article  CAS  Google Scholar 

  • Lee KY, Chun J, Lee JH, Kim KN, Kang NR, Kim JY, Kim MH, Shin KS, Gupta MK, Baik JM (2014) Hydrophobic sponge structure-based triboelectric nanogenerator. Adv Mater 26(29):5037–5042

    Article  CAS  Google Scholar 

  • Lee Y, Kim W, Bhatia D, Hwang HJ, Lee S, Choi D (2017) Cam-based sustainable triboelectric nanogenerators with a resolution-free 3D-printed system. Nano Energy 38:326–334

    Article  CAS  Google Scholar 

  • Lin L, Wang S, Niu S, Liu C, Xie Y, Wang ZL (2014) Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl Mater Interfaces 6(4):3031–3038

    Article  CAS  Google Scholar 

  • Lin L, Wang S, Xie Y, Jing Q, Niu S, Hu Y, Wang ZL (2013a) Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett 13(6):2916–2923

    Article  CAS  Google Scholar 

  • Lin Z-H, Xie Y, Yang Y, Wang S, Zhu G, Wang ZL (2013b) Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. ACS Nano 7(5):4554–4560

    Article  CAS  Google Scholar 

  • Liu L, Zhao HF, Lian ZH, Yu HY, Zhang QQ, Li WX, Xu MY, Xiao X (2021) An ultra-high power density Helmholtz resonance acoustic energy converter based on triboelectric nanogenerator. 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (Nems), pp 1695–1699

    Google Scholar 

  • Liu YD, Zhu YX, Liu JY, Zhang Y, Liu J, Zhai JY (2018) Design of bionic cochlear basilar membrane acoustic sensor for frequency selectivity based on film triboelectric nanogenerator. Nanoscale Res Lett 13:191

    Article  Google Scholar 

  • Marghitu DB (2001) Mechanical engineer’s handbook. Elsevier

    Google Scholar 

  • Meng B, Cheng X, Zhang X, Han M, Liu W, Zhang H (2014) Single-friction-surface triboelectric generator with human body conduit. Appl Phys Lett 104(10):103904

    Article  Google Scholar 

  • Moss SD, Payne OR, Hart GA, Ung C (2015) Scaling and power density metrics of electromagnetic vibration energy harvesting devices. Smart Mater Struct 24(2):023001

    Article  Google Scholar 

  • Niu S, Wang S, Lin L, Liu Y, Zhou YS, Hu Y, Wang ZL (2013) Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ Sci 6(12):3576–3583

    Article  Google Scholar 

  • Olson DW, Wolf SF, Hook JM (2015) The tacoma narrows bridge collapse. Phys Today 68(11):64–65

    Article  Google Scholar 

  • Park H-W, Huynh ND, Kim W, Lee C, Nam Y, Lee S, Chung K-B, Choi D (2018) Electron blocking layer-based interfacial design for highly-enhanced triboelectric nanogenerators. Nano Energy 50:9–15

    Article  CAS  Google Scholar 

  • Park JY, Salauddin M, Rasel MS (2019) Nanogenerator for scavenging low frequency vibrations. J Micromech Microeng 29(5):053001

    Article  CAS  Google Scholar 

  • Park M, Cho S, Yun Y, La M, Park SJ, Choi D (2021) A highly sensitive magnetic configuration-based triboelectric nanogenerator for multidirectional vibration energy harvesting and self-powered environmental monitoring. Int J Energy Res 45(12):18262–18274

    Article  CAS  Google Scholar 

  • Pham KD, Bhatia D, Huynh ND, Kim H, Baik JM, Lin Z-H, Choi D (2021) Automatically switchable mechanical frequency regulator for continuous mechanical energy harvesting via a triboelectric nanogenerator. Nano Energy 89:106350

    Article  CAS  Google Scholar 

  • Shankar R (2014) Fundamentals of physics. Yale University Press

    Google Scholar 

  • Suhane A, Rana R, Purohit R (2018) Prospects of Torsen differential in four wheel drive automobile transmission system. Mater Today Proc 5(2):4036–4045

    Article  Google Scholar 

  • Sun W, Zheng Y, Li T, Feng M, Cui S, Liu Y, Chen S, Wang D (2021) Liquid-solid triboelectric nanogenerators array and its applications for wave energy harvesting and self-powered cathodic protection. Energy 217:119388

    Article  CAS  Google Scholar 

  • Taghavi M, Sadeghi A, Mazzolai B, Beccai L, Mattoli V (2014) Triboelectric-based harvesting of gas flow energy and powerless sensing applications. Appl Surf Sci 323:82–87

    Article  CAS  Google Scholar 

  • Tcho I-W, Jeon S-B, Park S-J, Kim W-G, Jin IK, Han J-K, Kim D, Choi Y-K (2018) Disk-based triboelectric nanogenerator operated by rotational force converted from linear force by a gear system. Nano Energy 50:489–496

    Article  CAS  Google Scholar 

  • Wang J, Li S, Yi F, Zi Y, Lin J, Wang X, Xu Y, Wang ZL (2016) Sustainably powering wearable electronics solely by biomechanical energy. Nat Commun 7(1):1–8

    Google Scholar 

  • Xie Y, Zhang H, Yao G, Khan SA, Gao M, Su Y, Yang W, Lin Y (2018) Intelligent sensing system based on hybrid nanogenerator by harvesting multiple clean energy. Adv Eng Mater 20(1):1700886

    Article  Google Scholar 

  • Xu M, Wang P, Wang YC, Zhang SL, Wang AC, Zhang C, Wang Z, Pan X, Wang ZL (2018) A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self-powered vibration sensing. Adv Energy Mater 8(9):1702432

    Article  Google Scholar 

  • Xu M, Zhao T, Wang C, Zhang SL, Li Z, Pan X, Wang ZL (2019) High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy. ACS Nano 13(2):1932–1939

    CAS  Google Scholar 

  • Yang CC, Liu GL, Wang XJ, Liu BX, Xiao LF, Wan LY, Yao HL (2022) Harvesting wide frequency micromechanical vibration energy and wind energy with a multi-mode triboelectric nanogenerator for traffic monitoring and warning. Adv Mater Technol:2200465

    Google Scholar 

  • Yang H, Liu W, Xi Y, Lai M, Guo H, Liu G, Wang M, Li T, Ji X, Li X (2018) Rolling friction contact-separation mode hybrid triboelectric nanogenerator for mechanical energy harvesting and self-powered multifunctional sensors. Nano Energy 47:539–546

    Article  CAS  Google Scholar 

  • Yang J, Chen J, Liu Y, Yang WQ, Su YJ, Wang ZL (2014b) Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 8(3):2649–2657

    Article  CAS  Google Scholar 

  • Yang W, Gao Q, Xia X, Zhang X, Lu X, Yang S, Cheng T, Wang ZL (2020) Travel switch integrated mechanical regulation triboelectric nanogenerator with linear–rotational motion transformation mechanism. Extreme Mech Lett 37:100718

    Article  Google Scholar 

  • Yang W, Wang Y, Li Y, Wang J, Cheng T, Wang ZL (2019) Integrated flywheel and spiral spring triboelectric nanogenerator for improving energy harvesting of intermittent excitations/triggering. Nano Energy 66:104104

    Article  CAS  Google Scholar 

  • Yang WQ, Chen J, Jing QS, Yang J, Wen XN, Su YJ, Zhu G, Bai P, Wang ZL (2014a) 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv Funct Mater 24(26):4090–4096

    Article  CAS  Google Scholar 

  • Yang WQ, Chen J, Zhu G, Yang J, Bai P, Su YJ, Jing QS, Cao X, Wang ZL (2013) Harvesting energy from the natural vibration of human walking. ACS Nano 7(12):11317–11324

    Article  CAS  Google Scholar 

  • Yao C, Hernandez A, Yu Y, Cai Z, Wang X (2016) Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy 30:103–108

    Article  CAS  Google Scholar 

  • Yu A, Song M, Zhang Y, Zhang Y, Chen L, Zhai J, Wang ZL (2015) Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator. Nano Res 8(3):765–773

    Article  CAS  Google Scholar 

  • Yu J, Kim W, Oh S, Bhatia D, Kim JG, Choi D (2022) Toward optimizing resonance for enhanced triboelectrification of oscillating triboelectric nanogenerators. Int J Prec Eng Manuf Green Technol 10:409

    Article  Google Scholar 

  • Yuan TC, Yang J, Song RG, Liu XW (2014) Vibration energy harvesting system for railroad safety based on running vehicles. Smart Mater Struct 23(12)

    Google Scholar 

  • Yun Y, Jang S, Cho S, Lee SH, Hwang HJ, Choi D (2021) Exo-shoe triboelectric nanogenerator: toward high-performance wearable biomechanical energy harvester. Nano Energy 80:105525

    Article  CAS  Google Scholar 

  • Zeng Q, Wu Y, Tang Q, Liu W, Wu J, Zhang Y, Yin G, Yang H, Yuan S, Tan D (2020) A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration. Nano Energy 70:104524

    Article  CAS  Google Scholar 

  • Zhang H, Yang Y, Zhong X, Su Y, Zhou Y, Hu C, Wang ZL (2014) Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. ACS Nano 8(1):680–689

    Article  CAS  Google Scholar 

  • Zhang LB, Meng B, Tian Y, Meng XK, Lin XB, He YX, Xing CY, Dai HL, Wang L (2022) Vortex-induced vibration triboelectric nanogenerator for low speed wind energy harvesting. Nano Energy 95:107029

    Article  CAS  Google Scholar 

  • Zhang R, Wang D, Guo J, Cheng P, Yuan Y (2018) Flat spiral spring dimension inspection based on machine vision. J Phys Conf Ser, IOP Publishing 1074:012179

    Article  Google Scholar 

  • Zhao HF, Xiao X, Xu P, Zhao TC, Song LG, Pan XX, Mi JC, Xu MY, Wang ZL (2019) Dual-tube Helmholtz resonator-based triboelectric nanogenerator for highly efficient harvesting of acoustic energy. Adv Energy Mater 9(46):1902824

    Article  CAS  Google Scholar 

  • Zhao K, Wang ZL, Yang Y (2016) Self-powered wireless smart sensor node enabled by an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator. ACS Nano 10(9):9044–9052

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dukhyun Choi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Huynh, N.D., Nguyen, D.C., Choi, D. (2023). Mechanical Systems for Triboelectric Nanogenerators. In: Wang, Z.L., Yang, Y., Zhai, J., Wang, J. (eds) Handbook of Triboelectric Nanogenerators. Springer, Cham. https://doi.org/10.1007/978-3-031-05722-9_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05722-9_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05722-9

  • Online ISBN: 978-3-031-05722-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics