Skip to main content

Novel Radiopharmaceuticals for Therapy

  • Reference work entry
  • First Online:
Nuclear Oncology

Abstract

In the era of personalized medicine, “targeted radionuclide therapy” (TRT) is designed to damage only the cancerous cells while sparing unnecessary damage to the adjacent healthy cells/tissues. Unlike conventional external beam radiation therapy, TRT is intended to cause less or no collateral damage to normal tissues, as it aims at achieving targeted drug delivery either to a clinically diagnosed cancer not amenable to surgery or to metastatic tumor cells and tumor cell clusters, thus providing systemic therapy of cancer. Currently there are hundreds of new pathway-targeted anticancer agents undergoing phase II and phase III clinical trials. TRT is just one type within the domain of “targeted therapies.” In addition to the effective targeted radiopharmaceuticals already well validated for routine clinical use, newer radiolabeled agents are still in the phase of either preclinical or clinical validation.

This chapter describes the main physical and radiochemical characteristics of radionuclides that have potential or have already been employed to label biologically reactive molecules for the development of novel radiopharmaceuticals for therapy. Some of these agents have entered advanced clinical trials in tumor-bearing patients. Results of these clinical trials cover a wide spectrum of potential clinical usefulness.

The chapter is divided into two main parts depending on the type of particle emission (α or β associated or not with the emission of either γ-rays or β+ particles). Within each domain, there is some exchange of experience and shift of focus in the various phases of development, depending on the modalities of ascertaining efficient tumor targeting according to the principles of theranostics. Theranostics is often performed utilizing the same molecule labeled with two different radionuclides, one radionuclide for imaging and another for therapy, in order to achieve a personalized treatment approach to the patient. Nowadays, the fields of interest include the well-established use of radioactive iodine in differentiated thyroid cancer, radiolabeled metaiodobenzylguanidine (MIBG) in neuroblastoma, and the clinical impact of peptide receptor radionuclide therapy (PRRT) in the management of neuroendocrine tumors. Furthermore, the more cutting-edge and recently introduced theranostic approaches will be reviewed, such as the radioligand therapy with 177Lu-PSMA-ligand and targeted alpha therapy in castration-resistant prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALP:

Alkaline phosphatase

AUNP:

Gold nanoparticle

BBN:

Bombesin

BsMAb:

Bispecific monoclonal antibody

CAIX:

Carbonic anhydrase isoenzyme 9

ccRCC:

Clear-cell renal carcinoma

CEA:

Carcinoembryonic antigen

CI:

Confidence interval

DOTA:

2-(4-isothiocyanatobenzyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (macrocyclic coupling agent to label compounds of biological interest with metal radionuclides)

EBRT:

External beam radiation therapy

ECM:

Extracellular matrix

EDTMP:

Ethylenediamine tetra(methylene phosphonic acid)

EMA:

European Medicines Agency

FDA:

Food and Drug Administration of the United States of America

FN:

Fibronectin

GA:

Arabic glycoprotein

HA:

Hydroxyapatite

HAMA:

Human anti-mouse antibody

HER2:

Human epidermal growth factor receptor 2, also known as receptor tyrosine-protein kinase erbB-2, or HER2/neu

HSG:

Histamine-succinyl-glutamine hapten

L-19 SIP:

Small immunoreactive protein, (scFv) 2, derived from monoclonal antibody L19

L-19:

Monoclonal antibody recognizing the EDB domain of fibronectin

MAA:

Macroaggregated albumin

mAb:

Monoclonal antibody

mCRPC:

Metastatic castrate-resistant prostate cancer

MIBG:

Metaiodobenzylguanidine

MTA-1:

Metastasis-associated protein encoded by the MTA1 gene

MTC:

Medullary thyroid cancer

MTD:

Maximum tolerated dose

MTRD:

Maximum tolerated radiation dose

MX35:

A monoclonal antibody recognizing the sodium-dependent phosphate transport protein 2b

NaPi2b:

Sodium-dependent phosphate transport protein 2b

NCA:

No-carrier-added

NHL:

Non-Hodgkin’s lymphoma

PAI2-uPAR:

Proteases, members of the urokinase-type plasminogen activator family

PCa:

Prostatic carcinoma

PET:

Positron emission tomography

PRRT:

Peptide receptor radionuclide therapy

PSA:

Prostate-specific antigen

PSMA:

Prostate-specific membrane antigen

RE:

Radioembolization

RIT:

Radioimmunotherapy

[211At]SAPC:

N-succinimidyl 5-[211At]astato-3-pyridinecarboxylate

SCID:

Severe combined immunodeficiency

SPECT:

Single-photon emission computed tomography

SRE:

Skeletal-related event

TAT:

Targeted alpha therapy

TCMC:

2-(4-isothiocyanatobenzyl-1,4,7,10-tetraaza-1,4,7,10-tetra-(2-carbamonylmetyl)-cyclododecane (macrocyclic coupling agent to label compounds of biological interest with metal radionuclides)

Theranostic:

An agent with both diagnostic and therapeutic capabilities (e.g., 131I-iodide, in low activity it is a diagnostic agent; in high activity it is a therapeutic agent)

TROP-2:

Cell-surface glycoprotein overexpressed in adenocarcinomas, correlated with tumor aggressiveness

TRT:

Targeted radionuclide therapy

VGEF:

Vascular endothelial growth factor

WHO:

World Health Organization

References

  1. Sgouros G, Roeske JC, McDevitt MR, et al. MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy. J Nucl Med. 2010;51:311–28.

    Article  CAS  PubMed  Google Scholar 

  2. Bruland OS, Nilsson S, Fisher DR, Larsen RH. High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223Ra: adjuvant or alternative to conventional modalities? Clin Cancer Res. 2006;12:6250s–7.

    Article  CAS  PubMed  Google Scholar 

  3. Henriksen G, Breistol K, Bruland OS, et al. Significant antitumor effect from bone-seeking, alpha-particle-emitting 223Ra demonstrated in an experimental skeletal metastases model. Cancer Res. 2002;62:3120–5.

    Google Scholar 

  4. Henriksen G, Fisher DR, Roeske JC, et al. Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice. J Nucl Med. 2003;44:252–9.

    CAS  PubMed  Google Scholar 

  5. Zalutsky MR, Vaidyanathan G. Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha-particle radiotherapy. Curr Pharm Des. 2000;6:1433–55.

    Article  CAS  PubMed  Google Scholar 

  6. Miederer M, McDevitt MR, Sgouros G, et al. Pharmacokinetics, dosimetry, and toxicity of the targetable atomic generator, 225Ac-HuM195, in nonhuman primates. J Nucl Med. 2004;45:129–37.

    Google Scholar 

  7. Zalutsky MR, Garg PK, Friedman HS, Bigner DD. Labeling monoclonal antibodies and F(ab′)2 fragments with the alpha-particle-emitting nuclide astatine-211: preservation of immunoreactivity and in vivo localizing capacity. Proc Natl Acad Sci USA. 1989;86:7149–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reist CJ, Foulon CF, Alston K, Bigner DD, Zalutsky MR. Astatine-211 labeling of internalizing anti-EGFRvIII monoclonal antibody using N-succinimidyl 5-[211At]astato-3-pyridinecarboxylate. Nucl Med Biol. 1999;26:405–11.

    Article  CAS  PubMed  Google Scholar 

  9. Orozco JJ, Bäck T, Kenoyer A, et al. Anti-CD45 radioimmunotherapy using 211At with bone marrow transplantation prolongs survival in a disseminated murine leukemia model. Blood. 2013;121:3759–67.

    Google Scholar 

  10. Zalutsky MR, Reardon DA, Akabani G, et al. Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med. 2008;49:30–8.

    Google Scholar 

  11. Andersson H, Cederkrantz E, Bäck T, et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of 211At-MX35 F(ab′)2 – a phase I study. J Nucl Med. 2009;50:1153–60.

    Google Scholar 

  12. Boll RA, Malkemus D, Mirzadeh S. Production of actinium-225 for alpha particle mediated radioimmunotherapy. Appl Radiat Isot. 2005;62:667–79.

    Article  CAS  PubMed  Google Scholar 

  13. Apostolidis C, Molinet R, Rasmussen G, Morgenstern A. Production of Ac-225 from Th-229 for targeted alpha therapy. Anal Chem. 2005;77:6288–91.

    Article  CAS  PubMed  Google Scholar 

  14. Apostolidis C, Molinet R, McGinley J, et al. Cyclotron production of Ac-225 for targeted alpha therapy. Appl Radiat Isot. 2005;62:383–7.

    Google Scholar 

  15. Miederer M, Scheinberg DA, McDevitt MR. Realizing the potential of the actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv Drug Deliv Rev. 2008;60:1371–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Borchardt PE, Yuan RR, Miederer M, et al. Targeted actinium-225 in vivo generators for therapy of ovarian cancer. Cancer Res. 2003;63:5084–90.

    Google Scholar 

  17. Song H, Hobbs RF, Vajravelu R, Huso DL, Esaias C, Apostolidis C, et al. Radioimmunotherapy of breast cancer metastases with alpha-particle emitter 225Ac: comparing efficacy with 213Bi and 90Y. Cancer Res. 2009;69:8941–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Woodward J, Kennel SJ, Stuckey A, et al. LaPO4 nanoparticles doped with actinium-225 that partially sequesters daughter radionuclides. Bioconjug Chem. 2011;22:766–76.

    Article  CAS  PubMed  Google Scholar 

  19. McLaughlin MF, Robertson D, Pevsner PH, et al. LnPO 4 nanoparticles doped with Ac-225 and sequestered daughters for targeted alpha therapy. Cancer Biother Radiopharm. 2014;29:34–41.

    Google Scholar 

  20. McDevitt MR, Ma D, Lai LT, et al. Tumor therapy with targeted atomic nanogenerators. Science. 2001;294:1537–40.

    Google Scholar 

  21. Jurcic JG, Rosenblat TL, McDevitt MR, et al. Phase I trial of the targeted alpha-particle nano-generator actinium-225 (225Ac-lintuzumab) (anti- CD33; HuM195) in acute myeloid leukemia (AML). J Clin Oncol. 2011;29:651–6.

    Google Scholar 

  22. Dawicki W, Allen KJH, Jiao R, et al. Daratumumab-225Actinium conjugate demonstrates greatly enhanced antitumor activity against experimental multiple myeloma tumors. Oncoimmunology. 2019;8(8):1607673.

    Google Scholar 

  23. Meredith R, Torgue J, Shen S, et al. Dose escalation and dosimetry of first-in-human radioimmunotherapy with 212Pb-TCMC-trastuzumab. J Nucl Med. 2014;55:1636–42.

    Google Scholar 

  24. Meredith RF, Torgue J, Azure MT, Shen S, Saddekni S, Banaga E, et al. Pharmacokinetics and imaging of 212Pb-TCMC-trastuzumab after intraperitoneal administration in ovarian cancer patients. Cancer Biother Radiopharm. 2014;29:12–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schwartz J, Jaggi JS, O’Donoghue JA, et al. Renal uptake of bismuth-213 and its contribution to kidney radiation dose following administration of actinium-225-labeled antibody. Phys Med Biol. 2011;56:721–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Benešová M, Schäfer M, Bauder-Wüst U, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med. 2015;56:914–20.

    Article  PubMed  Google Scholar 

  27. Benešová M, Bauder-Wüst U, Schäfer M, et al. Linker modification strategies to control the prostate-specific membrane antigen (PSMA)-targeting and pharmacokinetic properties of DOTA-conjugated PSMA inhibitors. J Med Chem. 2016;59:1761–75.

    Article  PubMed  Google Scholar 

  28. Kratochwil C, Giesel FL, Stefanova M, et al. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with Lu-177 labeled PSMA-617. J Nucl Med. 2016;57:1170–6.

    Article  CAS  PubMed  Google Scholar 

  29. Ahmadzadehfar H, Rahbar K, Kürpig S, et al. Early side effects and first results of radioligand therapy with 177Lu-DKFZ-617 PSMA of castrate-resistant metastatic prostate cancer: a two-centre study. EJNMMI Res. 2015;5(1):114.

    Google Scholar 

  30. Ahmadzadehfar H, Eppard E, Kürpig S, et al. Therapeutic response and side effects of repeated radioligand therapy with 177Lu-PSMA-DKFZ-617 of castrate-resistant metastatic prostate cancer. Oncotarget. 2016;7:12477–88.

    Google Scholar 

  31. Kratochwil C, Bruchertseifer F, Giesel FL, et al. 225Ac-PSMA-617 for PSMA targeting alpha-radiation therapy of patients with metastatic castration-resistant prostate cancer. J Nucl Med. 2016;57:1941–4.

    Google Scholar 

  32. Heyerdahl H, Abbas N, Sponheim K, et al. Targeted alpha therapy with 227Th-trastuzumab of intraperitoneal ovarian cancer in nude mice. Curr Radiopharm. 2013;6:106–16.

    Google Scholar 

  33. Hagemann UB, Ellingsen C, Schuhmacher J, et al. Mesothelin-targeted thorium-227 conjugate (MSLN-TTC): preclinical evaluation of a new targeted alpha therapy for mesothelin-positive cancers. Clin Cancer Res. 2019;25:4723–34.

    Google Scholar 

  34. O’Donoghue JA, Bardiès M, Wheldon TE. Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med. 1995;36:1902–9.

    PubMed  Google Scholar 

  35. Boudousq V, Bobyk L, Busson M, et al. Comparison between internalizing anti-HER2 mAbs and non-internalizing anti-CEA mAbs in alpha-radioimmunotherapy of small volume peritoneal carcinomatosis using 212Pb. PLoS One. 2013;8:e69613.

    Google Scholar 

  36. De Vincentis G, Gerritsen W, Gschwend JE, et al. Advances in targeted alpha therapy for prostate cancer. Ann Oncol. 2019;30:1728–39.

    Google Scholar 

  37. McDevitt MR, Sgouros G, Finn RD, et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med. 1998;25:1341–51.

    Google Scholar 

  38. Jurcic JG, Pandit-Taskar N, Divgi CR, et al. Alpha particle immunotherapy for acute myeloid leukemia (AML) with bismuth-213 and actinium-225 [abstract]. Cancer Biother Radiopharm. 2006;21:396.

    Google Scholar 

  39. McLaughlin MF, Woodward J, Boll RA, et al. Gold coated lanthanide phosphate nanoparticles for targeted alpha generator radiotherapy. PLoS One. 2013;8:e54531.

    Google Scholar 

  40. Jurcic JG, Larson SM, Sgouros G, et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood. 2002;100:1233–9.

    Google Scholar 

  41. Królicki L, Kunikowska J, Bruchertseifer F, et al. 225Ac- and 213Bi-substance P Analogues for Glioma Therapy. Semin Nucl Med. 2020;50:141–151.

    Google Scholar 

  42. Chérel M, Gouard S, Gaschet J, et al. 213Bi Radioimmunotherapy with an anti-mCD138 monoclonal antibody in a murine model of multiple myeloma. J Nucl Med. 2013;54:1597–604.

    Google Scholar 

  43. http://www.arevamed.areva.com/EN/home-134/nuclear-medicine.html#tab=tab3

  44. Yong KJ, Milenic DE, Baidoo KE, Brechbiel MW. 212Pb-radioimmunotherapy induces G2 cell-cycle arrest and delays DNA damage repair in tumor xenografts in a model for disseminated intraperitoneal disease. Mol Cancer Ther. 2012;11:639–48.

    Google Scholar 

  45. Yong KJ, Milenic DE, Baidoo KE, et al. Gene expression profiling upon 212Pb-TCMC-trastuzumab treatment in the LS-174T i.p. xenograft model. Cancer Med. 2013;2:646–53.

    Google Scholar 

  46. Ruegg CL, Anderson-Berg ET, Brechbiel MW, et al. Improved in vivo stability and tumor targeting of bismuth-labeled antibody. Cancer Res. 1990;50:4221–6.

    Google Scholar 

  47. Chappell LL, Dadachova E, Milenic DE, et al. Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotope 203Pb and 212Pb. Nucl Med Biol. 2000;27:93–100.

    Google Scholar 

  48. Ruble G, Wu C, Squire RA, et al. The use of 212Pb-labeled monoclonal antibody in the treatment of murine erythroleukemia. Int J Radiat Oncol Biol Phys. 1996;34:609–16.

    Google Scholar 

  49. McMurry TJ, Brechbiel MW, Kumar K, Gansow OA. Convenient synthesis of bifunctional tetraaza macrocycles. Bioconjug Chem. 1992;3:108–17.

    Article  CAS  PubMed  Google Scholar 

  50. Milenic DE, Garmestani K, Brady ED, et al. Alpha-particle radioimmunotherapy of disseminated peritoneal diseases using a 212Pb-labeled radioimmunoconjugate targeting HER2. Cancer Biother Radiopharm. 2005;20:557–66.

    Google Scholar 

  51. Andersson H, Elgqvist J, Horvath G, et al. Astatine-211-labeled antibodies for treatment of disseminated ovarian cancer: an overview of results in an ovarian tumor model. Clin Cancer Res. 2003;9:S3914–21.

    Google Scholar 

  52. Milenic DE, Baidoo KE, Kim YS, Brechbiel MW. Evaluation of cetuximab as a candidate for targeted α-particle radiation therapy of HER1-positive disseminated intraperitoneal disease. MAbs. 2015;7:255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stallons TAR, Saidi A, Tworowska I, Delpassand ES, Torgue JJ. Preclinical investigation of 212Pb-DOTAMTATE for peptide receptor radionuclide therapy in a neuroendocrine tumor model. Mol Cancer Ther. 2019;18(5):1012–21.

    Article  CAS  PubMed  Google Scholar 

  54. Delpassand E, Tworowska I, Torgue J, et al. First-in-human dose escalation of AlphaMedix™ for targeted alpha-emitter therapy of NETs. J Nucl Med. 2020;61(Suppl 1):415.

    Google Scholar 

  55. Kostourou V, Papalazarou V. Non-collagenous ECM proteins in blood vessel morphogenesis and cancer. Biochim Biophys Acta. 2014;1840:2403–13.

    Article  CAS  PubMed  Google Scholar 

  56. Rosario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol. 2010;341:126–40.

    Article  Google Scholar 

  57. Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 2003;3:422–33.

    Article  CAS  PubMed  Google Scholar 

  58. Nicolò G, Salvi S, Oliveri G, et al. Expression of tenascin and of the ED-B containing oncofetal fibronectin isoform in human cancer. Cell Differ Dev. 1990;32:401–8.

    Google Scholar 

  59. Halin C, Zardi L, Neri D. Antibody-based targeting of angiogenesis. News Physiol Sci. 2001;16:191–4.

    CAS  PubMed  Google Scholar 

  60. Castellani P, Viale G, Dorcaratto A, et al. The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int J Cancer. 1994;59:612–8.

    Google Scholar 

  61. Carnemolla B, Balza E, Siri A, et al. A tumor-associated fibronectin isoform generated by alternative splicing of messenger RNA precursors. J Cell Biol. 1989;108:1139–48.

    Google Scholar 

  62. Kaczmarek J, Castellani P, Nicolò G, et al. Distribution of oncofetal fibronectin isoforms in normal, hyperplastic and neoplastic human breast tissues. Int J Cancer. 1994;59:11–6.

    Google Scholar 

  63. Sauer S, Erba PA, Petrini M, Menrad A, Giovannoni L, Grana C, et al. Expression of the oncofetal ED-B-containing fibronectin isoform in hematologic tumors enables ED-B-targeted 131I-L19SIP radioimmunotherapy in Hodgkin lymphoma patients. Blood. 2009;113:2265–74.

    Article  CAS  PubMed  Google Scholar 

  64. Locher R, Erba PA, Hirsch B, et al. Abundant in vitro expression of the oncofetal ED-B-containing fibronectin translates into selective pharmacodelivery of 131I-L19SIP in a prostate cancer patient. J Cancer Res Clin Oncol. 2014;140:35–43.

    Google Scholar 

  65. Pujuguet P, Hammann A, Moutet M, et al. Expression of fibronectin ED-A+ and ED-B+ isoforms by human and experimental colorectal cancer. Contribution of cancer cells and tumor- associated myofibroblasts. Am J Pathol. 1996;148:579–92.

    Google Scholar 

  66. D’Ovidio MC, Mastracchio A, Marzullo A, et al. Intratumoral microvessel density and expression of ED- A/ED-B sequences of fibronectin in breast carcinoma. Eur J Cancer. 1998;34:1081–5.

    Google Scholar 

  67. Karelina TV, Eisen AZ. Interstitial collagenase and the ED-B oncofetal domain of fibronectin are markers of angiogenesis in human skin tumors. Cancer Detect Prev. 1998;22:438–44.

    Article  CAS  PubMed  Google Scholar 

  68. Castellani P, Borsi L, Carnemolla B, et al. Differentiation between high- and low-grade astrocytoma using a human recombinant antibody to the extra domain-B of fibronectin. Am J Pathol. 2002;161:1695–700.

    Google Scholar 

  69. Pini A, Viti F, Santucci A, et al. Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem. 1998;273:21769–76.

    Google Scholar 

  70. Viti F, Tarli L, Giovannoni L, et al. Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res. 1999;59:347–52.

    CAS  PubMed  Google Scholar 

  71. Demartis S, Tarli L, Borsi L, et al. Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin. Eur J Nucl Med. 2001;28:534–9.

    Google Scholar 

  72. Borsi L, Balza E, Bestagno M, et al. Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer. 2002;102:75–85.

    Google Scholar 

  73. Berndorff D, Borkowski S, Sieger S, et al. Radioimmunotherapy of solid tumors by targeting extra domain B fibronectin: identification of the best-suited radioimmunoconjugate. Clin Cancer Res. 2005;11:7053s–63.

    Google Scholar 

  74. Tijink BM, Neri D, Leemans CR, et al. Radioimmunotherapy of head and neck cancer xenografts using 131I-labeled antibody L19-SIP for selective targeting of tumor vasculature. J Nucl Med. 2006;47:1127–35.

    Google Scholar 

  75. Rybak JN, Trachsel E, Scheuermann J, Neri D. Ligand-based vascular targeting of disease. Chem Med Chem. 2007;2:22–40.

    Article  CAS  PubMed  Google Scholar 

  76. Santimaria M, Moscatelli G, Giovannoni L, et al. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res. 2003;9:571–9.

    Google Scholar 

  77. Erba PA, Sollini M, Orciuolo E, Traino C, Petrini M, Paganelli G, et al. Radioimmunotherapy with radretumab in patients with relapsed hematologic malignancies. J Nucl Med. 2012;53:922–7.

    Article  CAS  PubMed  Google Scholar 

  78. Poli G, Bianchi C, Virotta G, Bettini A, et al. Radretumab radioimmunotherapy in patients with brain metastasis: a 124I-L19SIP dosimetric PET study. Cancer Immunol Res. 2013;1:134–43.

    Google Scholar 

  79. Qaim SM. Therapeutic radionuclides and nuclear data. Radiochim Acta. 2001;89:297–302.

    Article  CAS  Google Scholar 

  80. Kondev FG. Nuclear data sheets for A = 177. Nucl Data Sheets. 2003;98:801–1095.

    Article  CAS  Google Scholar 

  81. Hofman MS, Violet J, Hicks RJ, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018; 19:825–33.

    Google Scholar 

  82. Kratochwil C, Fendler WP, Eiber M, et al. EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging. 2019;46:2536–44.

    Google Scholar 

  83. Tagawa ST, Beltran H, Vallabhajosula S, et al. Anti-prostate-specific membrane antigen-based radioimmunotherapy for prostate cancer. Cancer. 2010;116:1075–83.

    Google Scholar 

  84. O’Donnell RT, DeNardo SJ, Miers LA, et al. Combined modality radioimmunotherapy for human prostate cancer xenografts with taxanes and 90yttrium-DOTA-peptide-ChL6. Prostate. 2002;50:27–37.

    Google Scholar 

  85. Sokoloff RL, Norton KC, Gasior CL, et al. A dual-monoclonal sandwich assay for prostate-specific membrane antigen: levels in tissues, seminal fluid and urine. Prostate. 2000;43:150–7.

    Google Scholar 

  86. Bostwick DG, Pacellim A, Blute M, et al. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer. 1998;82:2256–61.

    Google Scholar 

  87. Liu H, Rajasekaran AK, Moy P, et al. Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res. 1998;58:4055–60.

    Google Scholar 

  88. Bander NH, Milowsky MI, Nanus DM, et al. Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol. 2005;23:4591–01.

    Google Scholar 

  89. Tagawa ST, Milowsky MI, Morris M, et al. Phase II study of lutetium-177 labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19:5182–91.

    Google Scholar 

  90. Barbet J, Peltier P, Bardet S, et al. Radioimmunodetection of medullary thyroid carcinoma using indium-111 bivalent hapten and anti-CEA X anti-DTPA-indium bispecific antibody. J Nucl Med. 1998;39:1172–8.

    Google Scholar 

  91. Goldenberg DM, Sharkey RM, Paganelli G, et al. Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. J Clin Oncol. 2006;24:823–34.

    Google Scholar 

  92. Chatal J-F, Campion L, Kraeber-Bodéré F, et al. Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French Endocrine Tumor Group. J Clin Oncol. 2006;24:1705–11.

    Google Scholar 

  93. Schoffelen R, Boerman OC, Goldenberg DM, et al. Development of an imaging-guided CEA-pretargeted radionuclide treatment of advanced colorectal cancer: first clinical results. Br J Cancer. 2013;109:934–42.

    Google Scholar 

  94. Schoffelen R, van der Weg W, Visser EP, et al. Predictive patient-specific dosimetry and individualized dosing of pretargeted radioimmunotherapy in patients with advanced colorectal cancer. Eur J Nucl Med Mol Imaging. 2014;41:1593–02.

    Google Scholar 

  95. Schoffelen R, van der Graaf WTA, Franssen G, et al. Pretargeted 177Lu radioimmunotherapy of carcinoembryonic antigen-expressing human colonic tumors in mice. J Nucl Med. 2010;51:1780–7.

    Google Scholar 

  96. Liu C, Brasic JR, Liu X, et al. Timing and optimized acquisition parameters for the whole-body imaging of 177Lu-EDTMP toward performing bone palliation treatment. Nucl Med Commun. 2012;33:90–6.

    Google Scholar 

  97. Dalm SU, Bakker IL, de Blois E, et al. 68Ga/177Lu-NeoBOMB1, a novel radiolabeled GRPR antagonist for theranostic use in oncology. J Nucl Med. 2017; 58:293–9.

    Google Scholar 

  98. Karagiannis TC. Comparison of different classes of radionuclides for potential use in radioimmunotherapy. Hell J Nucl Med. 2007;10:82–8.

    PubMed  Google Scholar 

  99. Unni PR, Solov SV, Chakraborty S, et al. 166Ho-HA: a new radiopharmaceutical for treatment of arthritis. BARC Newsl. 2006;208:1–8.

    Google Scholar 

  100. Unni PR, Chaudhury PR, Venkatesh M, et al. Preparation and evaluation of 166Ho labeled hydroxyapatite (HA) particles for radiosynovectomy. Nucl Med Biol. 2002;29:199–209.

    Google Scholar 

  101. Mumper RJ, Ryo UY, Jay M. Neutron-activated holmium-166-poly(L-lactic acid) microspheres: a potential agent for the internal radiation therapy of hepatic tumors. J Nucl Med. 1991;32:2139–43.

    CAS  PubMed  Google Scholar 

  102. Mumper J, Mills BJ, Ryo UY, Jay M. Polymeric microspheres for radionuclide synovectomy containing neutron-activated holmium-166. J Nucl Med. 1992;33:398–402.

    CAS  PubMed  Google Scholar 

  103. Smits ML, Nijsen JF, van den Bosch MA, et al. Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): a phase 1, dose-escalation study. Lancet Oncol. 2012;13:1025–34.

    Google Scholar 

  104. Prince JP, van den Bosch MAAJ, Nijsen JFW, et al. Efficacy of radioembolization with 166Ho-microspheres in salvage patients with liver metastases: a phase 2 study. J Nucl Med. 2018;59:582–8.

    Google Scholar 

  105. Mathew B, Chakraborty S, Das T, et al. 175Yb labeled polyaminophosphonates as potential agents for bone pain palliation. Appl Radiat Isot. 2004;60:635–42.

    Google Scholar 

  106. Sartor O. Overview of samarium Sm 153 lexidronam in the treatment of painful metastatic bone disease. Rev Urol. 2004;6:S3–S12.

    PubMed  PubMed Central  Google Scholar 

  107. Simón J, Frank RK, Crump DK, et al. A preclinical investigation of the saturation and dosimetry of 153Sm-DOTMP as a bone-seeking radiopharmaceutical. Nucl Med Biol. 2012;39:770–6.

    Google Scholar 

  108. Das T, Chakraborty S, Sarma HD, et al. 170Tm-EDTMP: a potential cost-effective alternative to 89SrCl2 for bone pain palliation. Nucl Med Biol. 2009;36:561–8.

    Google Scholar 

  109. DeNardo SJ, DeNardo GL, Kukis DL, et al. 67Cu-2IT-BAT-Lym-1 pharmacokinetics, radiation dosimetry, toxicity and tumor regression in patients with lymphoma. J Nucl Med. 1999;40:302–10.

    Google Scholar 

  110. DeNardo GL, DeNardo SJ, O’Donnell RT, et al. Are radiometal-labeled antibodies better than iodine-131-labeled antibodies: comparative pharmacokinetics and dosimetry of copper-67-, iodine-131-, and yttrium-90-labeled Lym-1 antibody in patients with non-Hodgkin’s lymphoma. Clin Lymphoma. 2000;1:118–26.

    Google Scholar 

  111. Delaloye AB, Delaloye B, Buchegger F, et al. Comparison of copper-67- and iodine-125-labeled anti-CEA monoclonal antibody biodistribution in patients with colorectal tumors. J Nucl Med. 1997;38:847–53.

    Google Scholar 

  112. Chu SYF, Ekstrom LP, Firestone B. Table of isotopes decay data. The Lund/LBNL Nuclear Data Search. February 1999. Last accessed 19 Jul 2016.

    Google Scholar 

  113. Minarik D, Sjögreen Gleisner K, Ljungberg M. Evaluation of quantitative 90Y SPECT based on experimental phantom studies. Phys Med Biol. 2008;53:5689–03.

    Article  CAS  PubMed  Google Scholar 

  114. Dancey JE, Shepherd FA, Paul K, et al. Treatment of non resectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J Nucl Med. 2000;41:1673–81.

    CAS  PubMed  Google Scholar 

  115. Kossert K, Schrader H. Activity standardization by liquid scintillation counting and half-life measurements of 90Y. Appl Radiat Isot. 2004;60:741–9.

    Article  CAS  PubMed  Google Scholar 

  116. Kyle V, Hazleman BL, Wraight PE. Yttrium-90 therapy and 99mTc pertechnetate knee uptake measurements in the management of rheumatoid arthritis. Ann Rheum Dis. 1983;42:132–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Smith T, Crawley JCW, Shawe DJ, Gumpel JM. SPECT using Bremsstrahlung to quantify 90Y uptake in Baker’s cysts: its application in radiation synovectomy of the knee. Eur J Nucl Med. 1988;14:498–503.

    Article  CAS  PubMed  Google Scholar 

  118. Otte A, Jermann E, Behe M, et al. DOTATOC: a powerful new tool for receptor-mediated radionuclide therapy. Eur J Nucl Med. 1997;24:792–5.

    Google Scholar 

  119. De Jong M, Valkema R, Jamar F, et al. Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings. Semin Nucl Med. 2002;32:133–40.

    Google Scholar 

  120. Knox SJ, Goris ML, Trisler K, et al. Yttrium-90-labeled anti CD20 monoclonal antibody therapy of recurrent B-cell lymphoma. Clin Cancer Res. 1996;2:457–70.

    Google Scholar 

  121. Leichner PK, Akabani G, Colcher D, et al. Patient-specific dosimetry of indium-111- and yttrium-90-labeled monoclonal antibody CC49. J Nucl Med. 1997;38:512–6.

    Google Scholar 

  122. Grady ED. Internal radiation therapy of hepatic cancer. Dis Colon Rectum. 1979;22:371–5.

    Article  CAS  PubMed  Google Scholar 

  123. Andrews JC, Walker SC, Ackermann RJ, et al. Hepatic radioembolization with yttrium-90 containing glass microspheres: preliminary results and clinical follow-up. J Nucl Med. 1994;35:1637–44.

    Google Scholar 

  124. Lau WY, Leung WT, Ho S, et al. Treatment of inoperable hepatocellular carcinoma with intrahepatic arterial yttrium-90 microspheres: a phase I and II study. Br J Cancer. 1994;70:994–9.

    Google Scholar 

  125. Kao YH, Steinberg JD, Tay YS, et al. Post-radioembolization yttrium-90 PET/CT – part 1: diagnostic reporting. JNMMI Res. 2013;3:56. https://doi.org/10.1186/2191-219X-3-56.

  126. Hnatowich DJ, Virzi F, Doherty PW. DTPA-coupled antibodies labeled with Yttrium-90. J Nucl Med. 1985;26:503–9.

    CAS  PubMed  Google Scholar 

  127. Wright CL, Werner JD, Tran JM, et al. Radiation pneumonitis following yttrium-90 radioembolization: case report and literature review. J Vasc Interv Radiol. 2012;23:669–74.

    Google Scholar 

  128. Collins J, Salem R. Hepatic radioembolization complicated by gastrointestinal ulceration. Semin Interv Radiol. 2011;28:240–5.

    Article  Google Scholar 

  129. Riaz A, Lewandowski RJ, Kulik LM, et al. Complications following radioembolization with yttrium-90 microspheres: a comprehensive literature review. J Vasc Interv Radiol. 2009;20:1121–30.

    Google Scholar 

  130. Lhommel R, van Elmbt L, Goffette P, et al. Feasibility of90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres. Eur J Nucl Med Mol Imaging. 2010;37:1654–62.

    Google Scholar 

  131. Knight PJ, Dombos JF, Rosen D, et al. The use of interstitial radiation therapy in the treatment of persistent, localized, and unresectable cancer in children. Cancer. 1986;57:951–4.

    Google Scholar 

  132. Rich TA. Radiation therapy for pancreatic cancer: eleven year experience at the JCRT. Int J Radiat Oncol Biol Phys. 1985;11:759–63.

    Article  CAS  PubMed  Google Scholar 

  133. Dhar S, Gu FX, Langer R, et al. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci U S A. 2008;105:17356–61.

    Google Scholar 

  134. Gommersall L, Shergill IS, Ahmed HU, et al. Nanotechnology in the management of prostate cancer. Br J Urol Int. 2008;102:1493–5.

    Google Scholar 

  135. Shulga OV, Zhou D, Demchenko AV, Stine KJ. Detection of free prostate specific antigen (fPSA) on a nanoporous gold platform. Analyst. 2008;133:319–22.

    Article  CAS  PubMed  Google Scholar 

  136. Thangapazham RL, Puri A, Tele S, et al. Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells. Int J Oncol. 2008;32:1119–23.

    Google Scholar 

  137. Cheng J, Teply BA, Sherifi I, et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28:869–76.

    Google Scholar 

  138. Grodzinski P, Silver M, Molnar LK. Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev Mol Diagn. 2006;6:307–18.

    Article  CAS  PubMed  Google Scholar 

  139. Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng. 2007;9:257–88.

    Article  CAS  PubMed  Google Scholar 

  140. Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem. 2006;384:620–30.

    Article  CAS  PubMed  Google Scholar 

  141. Sengupta S, Sasisekharan R. Exploiting nanotechnology to target cancer. Br J Cancer. 2007;96:1315–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther. 2006;5:1909–17.

    Article  CAS  PubMed  Google Scholar 

  143. Wang MD, Shin DM, Simons JW, Nie S. Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther. 2007;7:833–7.

    Article  CAS  PubMed  Google Scholar 

  144. Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev. 2008;60:1289–306.

    Article  CAS  PubMed  Google Scholar 

  145. Mukherjee P, Bhattacharya R, Wang P, et al. Antiangiogenic properties of gold nanoparticles. Clin Cancer Res. 2005;11:3530–4.

    Google Scholar 

  146. Chanda N, Kan P, Watkinson LD, et al. Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice. Nanomedicine. 2010;6:201–9.

    Article  CAS  PubMed  Google Scholar 

  147. Hu F, Cutler CS, Hoffman T, et al. Pm-149 DOTA bombesin analogs for potential radiotherapy. In vivo comparison with Sm-153 and Lu-177 labeled DO3A-amide-betaAla-BBN(7-14)NH2. Nucl Med Biol. 2002;29:423–30.

    Google Scholar 

  148. Grazman B, Troutner DE. 105Rh as a potential radiotherapeutic agent. Appl Radiat Isot. 1988;39:257–60.

    Google Scholar 

  149. Goswami N, Higginbotham C, Volkert W, et al. Rhodium-105 tetrathioether complexes: radiochemistry and initial biological evaluation. Nucl Med Biol. 1999;26:951–7.

    Google Scholar 

  150. Ando A, Ando I, Tonami N, et al. Production of 105Rh–EDTMP and its bone accumulation. Appl Radiat Isot. 2000;52:211–5.

    Google Scholar 

  151. Pietrelli L, Mausner LF, Kolsky KL. Separation of carrier-free Sc-47 from titanium targets. J Radioanal Nucl Chem. 1992;157:335–45.

    Article  CAS  Google Scholar 

  152. Müller C, Bunka M, Reber J, et al. Promises of cyclotron-produced 44Sc as a diagnostic match for trivalent β-emitters: in vitro and in vivo study of a 44Sc-DOTA-folate conjugate. J Nucl Med. 2013;54:2168–74.

    Google Scholar 

  153. Müller C, Zhernosekov K, Köster U, et al. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β-radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med. 2012;53:1951–9.

    Article  PubMed  Google Scholar 

  154. Pastorek J, Pastorekova S, Callebaut I, et al. Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene. 1994;9:2877–88.

    Google Scholar 

  155. Opavsky R, Pastorekova S, Zelnik V, et al. Human MN/CA9 gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships. Genomics. 1996;33:480–7.

    Google Scholar 

  156. Grabmaier K, Vissers JL, De Weijert MC, et al. Molecular cloning and immunogenicity of renal cell carcinoma-associated antigen G250. Int J Cancer. 2000;85:865–70.

    Google Scholar 

  157. Uemura H, Nakagawa Y, Yoshida K, et al. MN/CA IX/G250 as a potential target for immunotherapy of renal cell carcinomas. Br J Cancer. 1999;81:741–6.

    Google Scholar 

  158. Divgi CR, Bander NH, Scott AM, et al. Phase I/II radioimmunotherapy trial with iodine-131-labeled monoclonal antibody G250 in metastatic renal cell carcinoma. Clin Cancer Res. 1998;4:2729–39.

    Google Scholar 

  159. Oosterwijk E, Ruiter DJ, Hoedemaeker PJ, et al. Monoclonal antibody G250 recognizes a determinant present in renal-cell carcinoma and absent from normal kidney. Int J Cancer. 1986;38:489–94.

    Google Scholar 

  160. Pastorekova S, Parkkila S, Parkkila AK, et al. Carbonic anhydrase IX, MN/CA IX: analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology. 1997;112:398–408.

    Google Scholar 

  161. Steffens MG, Boerman OC, de Mulder PH, Oyen WJ, Buijs WC, Witjes JA, et al. Phase I radioimmunotherapy of metastatic renal cell carcinoma with 131I-labeled chimeric monoclonal antibody G250. Clin Cancer Res. 1999;5(10 Suppl):3268s–74.

    CAS  PubMed  Google Scholar 

  162. Divgi CR, O’Donoghue JA, Welt S, et al. Phase I clinical trial with fractionated radioimmunotherapy using 131I-labeled chimeric G250 in metastatic renal cancer. J Nucl Med. 2004;45:1412–21.

    Google Scholar 

  163. Brouwers AH, Mulders PF, de Mulder PH, et al. Lack of efficacy of two consecutive treatments of radioimmunotherapy with 131I-cG250 in patients with metastasized clear cell renal cell carcinoma. J Clin Oncol. 2005;23:6540–8.

    Google Scholar 

  164. Brouwers AH, Buijs WC, Mulders PF, et al. Radioimmunotherapy with [131I]cG250 in patients with metastasized renal cell cancer: dosimetric analysis and immunologic response. Clin Cancer Res. 2005;11(19 Pt 2):7178s–6.

    Google Scholar 

  165. Stillebroer AB, Boerman OC, Desar IM, et al. Phase 1 radioimmunotherapy study with lutetium 177-labeled anti-carbonic anhydrase IX monoclonal antibody girentuximab in patients with advanced renal cell carcinoma. Eur Urol. 2013;64:478–85.

    Article  CAS  PubMed  Google Scholar 

  166. Stillebroer AB, Zegers CM, Boerman OC, et al. Dosimetric analysis of 177Lu-cG250 radioimmunotherapy in renal cell carcinoma patients: correlation with myelotoxicity and pretherapeutic absorbed dose predictions based on 111In-cG250 imaging. J Nucl Med. 2012;53:82–9.

    Google Scholar 

  167. Divgi CR, Uzzo RG, Gatsonis C, et al. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. J Clin Oncol. 2013;31:187–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Guidoccio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Guidoccio, F., Mazzarri, S., Depalo, T., Orsini, F., Erba, P.A., Mariani, G. (2022). Novel Radiopharmaceuticals for Therapy. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-031-05494-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05494-5_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05493-8

  • Online ISBN: 978-3-031-05494-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics