Skip to main content

Measurement and Quantification

  • Chapter
  • First Online:
AI and Big Data in Cardiology

Abstract

This chapter deals with the clinical task of measuring and quantifying cardiac morphology and function. The chapter opens with a clinical introduction, which outlines current clinical workflows, including how they derive and make use of biomarkers as well as their weaknesses and limitations. A technical review is provided that summarises the state-of-the-art in AI for automated measurement and quantification. This technical section describes the common deep learning models that have been proposed for measurement and quantification, and also gives some specific examples of their application. A practical tutorial is provided on a simple CMR segmentation task. The chapter closes with a clinical opinion piece that speculates on the future impact of AI in this area.

Authors’ contribution:

\(\bullet \) Introduction, Opinion: BR.

\(\bullet \) Main chapter: OB, MD.

\(\bullet \) Tutorial: OB, TG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Confusingly, fully convolutional networks are sometimes abbreviated as FCNs, conflicting with the use of the same term for fully-connected networks. In this book we limit the use of the abbreviation FCN to fully-connected networks.

  2. 2.

    Graphics Processing Units. Training modern deep learning models typically has high computational demands and is often only made feasible by exploiting dedicated hardware on GPUs.

  3. 3.

    VGG is a widely used CNN architecture for classification problems [49].

References

  1. Litjens G, Ciompi F, Wolterink JM, de Vos BD, Leiner T, Teuwen J, Išgum I. State-of-the-art deep learning in cardiovascular image analysis. JACC: Cardiovasc Imaging. 2019;12(8), Part 1:1549–65.

    Google Scholar 

  2. Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena. 2020; 404:132306.

    Google Scholar 

  3. Taheri Dezaki F, Liao Z, Luong C, Girgis H, Dhungel N, Abdi AH, Behnami D, Gin K, Rohling R, Abolmaesumi P, Tsang T. Cardiac phase detection in echocardiograms with densely gated recurrent neural networks and global extrema loss. IEEE Trans Med Imaging. 2019;38(8):1821–32.

    Google Scholar 

  4. Choi E, Schuetz A, Stewart WF, Sun J. Using recurrent neural network models for early detection of heart failure onset. J Am Med Inf Assoc. 2016;24(2):361–70.

    Google Scholar 

  5. Wu D, Wang X, Bai J, Xu X, Ouyang B, Li Y, Zhang H, Song Q, Cao K, Yin Y. Automated anatomical labeling of coronary arteries via bidirectional tree LSTMs. Int J Comput Assist Radiol Surg. 2019;14(2):271–80.

    Article  Google Scholar 

  6. Østvik A, Smistad E, Aase SA, Haugen BO, Lovstakken L. Real-time standard view classification in transthoracic echocardiography using convolutional neural networks. Ultrasound Med Biol. 2019;45(2):374–84.

    Article  Google Scholar 

  7. Abdi AH, Luong C, Tsang T, Allan G, Nouranian S, Jue J, Hawley D, Fleming S, Gin K, Swift J, Rohling R, Abolmaesumi P. Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view. IEEE Trans Med Imaging. 2017;36(6):1221–30.

    Article  Google Scholar 

  8. Lessmann N, van Ginneken B, Zreik M, de Jong PA, de Vos BD, Viergever MA, Išgum I. Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions. IEEE Trans Med Imaging. 2017;37(2):615–25.

    Article  Google Scholar 

  9. Trullo R, Petitjean C, Nie D, Shen D, Ruan S. Joint segmentation of multiple thoracic organs in CT images with two collaborative deep architectures. In: Deep learning in medical image analysis and multimodal learning for clinical decision support. 2017. p. 21–9.

    Google Scholar 

  10. Bank D, Koenigstein N, Giryes R. Autoencoders. arXiv. 2020.

  11. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical image computing and computer-assisted intervention - MICCAI. Springer. 2015; p. 234–41.

    Google Scholar 

  12. Leclerc S, Smistad E, Pedrosa J, Østvik A, Cervenansky F, Espinosa F, Espeland T, Berg EAR, Jodoin PM, Grenier T, Lartizien C, D’hooge J, Lovstakken L, Bernard O. Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans Med Imaging. 2019;38(9):2198–210.

    Google Scholar 

  13. Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, Heng P, Cetin I, Lekadir K, Camara O, Ballester MAG, Sanroma G, Napel S, Petersen SE, Tziritas G, Grinias E, Khened M, Varghese A, Krishnamurthi G, Rohé M, Pennec X, Sermesant M, Isensee F, Jaeger P, Maier-Hein KH, Full PM, Wolf I, Engelhardt S, Baumgartner CF, Koch LM, Wolterink JM, Isgum I, Jang Y, Hong Y, Patravali J, Jain S, Humbert O, Jodoin P. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans Med Imaging. 2018;37(11):2514–25.

    Article  Google Scholar 

  14. Bai W, Sinclair M, Tarroni G, Oktay O, Rajchl M, Vaillant G, Lee A, Aung N, Lukaschuk E, Sanghvi M, et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J Cardiovasc Magn Reson. 2018;20(1):65.

    Article  Google Scholar 

  15. Zreik M, Lessmann N, van Hamersvelt RW, Wolterink JM, Voskuil M, Viergever MA, Leiner T, Išgum I. Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis. Med Image Anal. 2018;44:72–85.

    Article  Google Scholar 

  16. Wolterink JM, Leiner T, Viergever MA, Išgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging. 2017;36(12):2536–45.

    Article  Google Scholar 

  17. Zhang Z, Yang L, Zheng Y. Translating and segmenting multimodal medical volumes with cycle- and shape-consistency generative adversarial network. In: IEEE/CVF conference on computer vision and pattern recognition. 2018; p. 9242–51.

    Google Scholar 

  18. Spier N, Nekolla S, Rupprecht C, Mustafa M, Navab N, Baust M. Classification of polar maps from cardiac perfusion imaging with graph-convolutional neural networks. Sci Rep. 2019;9(1):1–8.

    Article  Google Scholar 

  19. Lu P, Bai W, Rueckert D, Noble JA. Multiscale graph convolutional networks for cardiac motion analysis. In: Ennis DB, Perotti LE, Wang VY, editors. Functional imaging and modeling of the heart. Cham: Springer; 2021. p. 264–72.

    Google Scholar 

  20. Vigneault DM, Xie W, Ho CY, Bluemke DA, Noble JA. Omega-Net: fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks. Med Image Anal. 2018;48:95–106.

    Article  Google Scholar 

  21. Xiong Z, Fedorov VV, Fu X, Cheng E, Macleod R, Zhao J. Fully automatic left atrium segmentation from late gadolinium enhanced magnetic resonance imaging using a dual fully convolutional neural network. IEEE Trans Med Imaging. 2019;38(2):515–24.

    Article  Google Scholar 

  22. Duan J, Bello G, Schlemper J, Bai W, Dawes TJW, Biffi C, de Marvao A, Doumoud G, O’Regan DP, Rueckert D. Automatic 3D bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach. IEEE Trans Med Imaging. 2019;38(9):2151–64.

    Article  Google Scholar 

  23. Smistad E, Østvik A, Salte IM, Melichova D, Nguyen TM, Haugaa K, Brunvand H, Edvardsen T, Leclerc S, Bernard O, Grenne B, Løvstakken L. Real-time automatic ejection fraction and foreshortening detection using deep learning. IEEE Trans Ultrason Ferroelectr Freq Control. 2020;67(12):2595–604.

    Article  Google Scholar 

  24. Østvik A, Salte IM, Smistad E, Nguyen TM, Melichova D, Brunvand H, Haugaa K, Edvardsen T, Grenne B, Lovstakken L. Myocardial function imaging in echocardiography using deep learning. IEEE Trans Med Imaging. 2021;1.

    Google Scholar 

  25. Oktay O, Ferrante E, Kamnitsas K, Heinrich M, Bai W, Caballero J, Cook SA, de Marvao A, Dawes T, O’Regan DP, Kainz B, Glocker B, Rueckert D. Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans Med Imaging. 2018;37(2):384–95.

    Article  Google Scholar 

  26. Simantiris G, Tziritas G. Cardiac MRI segmentation with a dilated CNN incorporating domain-specific constraints. IEEE J Sel Top Signal Process. 2020;14(6):1235–43.

    Article  Google Scholar 

  27. Ruijsink B, Puyol-Antón E, Oksuz I, Sinclair M, Bai W, Schnabel JA, Razavi R, King AP. Fully automated, quality-controlled cardiac analysis from CMR: validation and large-scale application to characterize cardiac function. JACC: Cardiovasc Imaging. 2020;13(3):684–95.

    Google Scholar 

  28. Leclerc S, Smistad E, Østvik A, Cervenansky F, Espinosa F, Espeland T, Rye Berg EA, Belhamissi M, Israilov S, Grenier T, Lartizien C, Jodoin PM, Lovstakken L, Bernard O. LU-Net: a multistage attention network to improve the robustness of segmentation of left ventricular structures in 2-D echocardiography. IEEE Trans Ultrason Ferroelectr Freq Control. 2020;67(12):2519–30.

    Google Scholar 

  29. Ye C, Wang W, Zhang S, Wang K. Multi-depth fusion network for whole-heart CT image segmentation. IEEE Access. 2019;7:23421–9.

    Google Scholar 

  30. Chen C, Qin C, Qiu H, Tarroni G, Duan J, Bai W, Rueckert D. Deep learning for cardiac image segmentation: a review. Front Cardiovasc Med. 2020;7:25.

    Article  Google Scholar 

  31. Sunnybrook challenge website. https://www.cardiacatlas.org/studies/sunnybrook-cardiac-data/.

  32. STACOM challenge 2011 website. https://www.cardiacatlas.org/challenges/lv-segmentation-challenge/.

  33. MICCAI RV challenge website. https://rvsc.projets.litislab.fr/.

  34. Kaggle challenge website. https://www.kaggle.com/c/second-annual-data-science-bowl.

  35. ACDC challenge website. https://www.creatis.insa-lyon.fr/Challenge/acdc/.

  36. M &Ms challenge website. https://www.ub.edu/mnms/.

  37. Bernard O, Bosch JG, Heyde B, Alessandrini M, Barbosa D, Camarasu-Pop S, Cervenansky F, Valette S, Mirea O, Bernier M, Jodoin P-M, Domingos JS, Stebbing RV, Keraudren K, Oktay O, Caballero J, Shi W, Rueckert D, Milletari F, Ahmadi S-A, Smistad E, Lindseth F, van Stralen M, Wang C, Smedby O, Donal E, Monaghan M, Papachristidis A, Geleijnse ML, Galli E, D’hooge J. Standardized evaluation system for left ventricular segmentation algorithms in 3D echocardiography. IEEE Trans Med Imaging. 2016;35(4):967–77.

    Google Scholar 

  38. EchoNet website. https://echonet.github.io/dynamic/.

  39. Isensee F, Jaeger PF, Full PM, Wolf I, Engelhardt S, Maier-Hein KH. Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features. In: Statistical atlases and computational models of the heart. 2017. p. 120–9.

    Google Scholar 

  40. Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203–11.

    Article  Google Scholar 

  41. Antonelli M, Reinke A, Bakas S, Farahani K, Kopp-Schneider A, Landman BA, Litjens G, Menze B, Ronneberger O, Summers RM, van Ginneken B, Bilello M, Bilic P, Christ PF, Do RKG, Gollub MJ, Heckers SH, Huisman H, Jarnagin WR, McHugo MK, Napel S, Pernicka JSG, Rhode K, Tobon-Gomez C, Vorontsov E, Huisman H, Meakin JA, Ourselin S, Wiesenfarth M, Arbelaez P, Bae B, Chen S, Daza L, Feng J, He B, Isensee F, Ji Y, Jia F, Kim N, Kim I, Merhof D, Pai A, Park B, Perslev M, Rezaiifar R, Rippel O, Sarasua I, Shen W, Son J, Wachinger C, Wang L, Wang Y, Xia Y, Xu D, Xu Z, Zheng Y, Simpson AL, Maier-Hein L, Cardoso MJ. The medical segmentation decathlon. Nat Commun. 2022; 13:4128.

    Google Scholar 

  42. Bogaert J, Dymarkowski S, Taylor A, Muthurangu V. Cardiac function. In: Clinical cardiac MRI. Springer. 2012. p. 109–68.

    Google Scholar 

  43. Wang S, Patel H, Miller T, Ameyaw K, Narang A, Chauhan D, Anand S, Anyanwu E, Besser SA, Kawaji K, Liu XP, Lang RM, Mor-Avi V, Patel AR. AI based CMR assessment of biventricular function: clinical significance of intervendor variability and measurement errors. JACC: Cardiovasc Imaging. 2021.

    Google Scholar 

  44. Mariscal Harana J, Vergani V, Asher C, Razavi R, King A, Ruijsink B, Puyol Anton E. Large-scale, multi-vendor, multi-protocol, quality-controlled analysis of clinical cine CMR using artificial intelligence. Eur Heart J Cardiovasc Imaging. 2021;22(Supplement_2).

    Google Scholar 

  45. Wei H, Cao H, Cao Y, Zhou Y, Xue W, Ni D, Li S. Temporal-consistent segmentation of echocardiography with co-learning from appearance and shape. In: International conference on medical image computing and computer-assisted intervention. Springer; 2020. p. 623–32.

    Google Scholar 

  46. Betancur J, Commandeur F, Motlagh M, Sharir T, Einstein AJ, Bokhari S, Fish MB, Ruddy TD, Kaufmann P, Sinusas AJ, Miller EJ, Bateman TM, Dorbala S, Di Carli M, Germano G, Otaki Y, Tamarappoo BK, Dey D, Berman DS, Slomka PJ. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study. JACC: Cardiovasc Imaging. 2018;11(11):1654–63.

    Google Scholar 

  47. Moradi M, Guo Y, Gur Y, Negahdar M, Syeda-Mahmood T. A cross-modality neural network transform for semi-automatic medical image annotation. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W, editors. Medical image computing and computer-assisted intervention - MICCAI 2016. Cham: Springer; 2016. p. 300–7.

    Google Scholar 

  48. Le Q, Mikolov T. Distributed representations of sentences and documents. In: International conference on machine learning. PMLR; 2014. p. 1188–96.

    Google Scholar 

  49. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2015.

    Google Scholar 

  50. Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. npj Digit Med. 2018;1:6.

    Google Scholar 

  51. Bruse JL, Ntsinjana H, Capelli C, Biglino G, McLeod K, Sermesant M, Pennec X, Hsia T-Y, Schievano S, Taylor A. CMR-based 3D statistical shape modelling reveals left ventricular morphological differences between healthy controls and arterial switch operation survivors. J Cardiovasc Magn Reson. 2016;18.

    Google Scholar 

  52. Chamsi-Pasha MA, Zhan Y, Debs D, Shah DJ. CMR in the evaluation of diastolic dysfunction and phenotyping of HFpEF: current role and future perspectives. JACC: Cardiovasc Imaging. 2020;13(1), Part 2:283–96, special Issue: Noninvasive Assessment of Left Ventricular Diastolic Function.

    Google Scholar 

  53. Juarez-Orozco L, Yeung M, Knol R, Benjamins J, Ruijsink B, Martinez-Manzanera O, Knuuti J, Asselbergs F, Van Der Zant F, Van Der Harst P. Predicting cardiovascular risk traits from PET myocardial perfusion imaging with deep learning. Eur Heart J. 2020;41(S2).

    Google Scholar 

  54. Chartsias A, Joyce T, Papanastasiou G, Semple S, Williams M, Newby DE, Dharmakumar R, Tsaftaris SA. Disentangled representation learning in cardiac image analysis. Med Image Anal. 2019;58:101535.

    Google Scholar 

Download references

Acknowledgements

BR was supported by the NIHR Cardiovascular MedTech Co-operative award to the Guy’s and St Thomas’ NHS Foundation Trust and Wellcome/EPSRC Centre for Medical Engineering at Kings College London (WT 203148/Z/16/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Bernard .

Editor information

Editors and Affiliations

4.1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 32888 KB)

Supplementary material 2 (zip 941773 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernard, O., Ruijsink, B., Grenier, T., De Craene, M. (2023). Measurement and Quantification . In: Duchateau, N., King, A.P. (eds) AI and Big Data in Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-031-05071-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05071-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05070-1

  • Online ISBN: 978-3-031-05071-8

  • eBook Packages: MedicineMedicine

Publish with us

Policies and ethics