Skip to main content

Induction of Hydrolytic Enzymes: A Criterion for Biological Control Candidates against Fungal Pathogen

  • Chapter
  • First Online:
Antifungal Metabolites of Rhizobacteria for Sustainable Agriculture

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Immune system of living organism is an essential aspect regardless of genus. All living organisms are prone to an infection that leads to disease severity. A strong immune system would limit the disease severity or even the infectivity rate. In animals, consumption of dietary supplements may help in enhancing or even boosting the immune level. Robust immune system is required to battle against pathogenic microorganisms or foreign bodies that attempt an ingression. Hence, plants also necessitate supplements that could be supplemented via microbes that could play roles as plant growth promoters and most prominently as disease defense. Various studies have proven that application of beneficial microbes contributes in the enhancement of plant defense systems against many phytopathogens. Thus, in the current chapter, the ability of candidate biological control agents (BCAs) to produce hydrolytic enzymes such as chitinase and glucanase was discussed. Performances of several endophytic microbes such as Trichoderma spp., Bacillus sp., and Pseudomonas sp. in secreting these two enzymes were explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Elyousr KA, Abdel-Hafez SI, Abdel-Rahim IR (2014) Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. J Phytopathol 162(9):567–574

    Article  Google Scholar 

  • Agrawal T, Kotasthane AS (2012) Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. Springerplus 1:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Ajit NS, Verma R, Shanmugam V (2006) Extracellular chitinases of fluorescent pseudomonads antifungal to fusarium oxysporum f. spp. dianthi causing carnation wilt. Current Microbiol 52:310–316

    Article  CAS  PubMed  Google Scholar 

  • Akiyama T, Pillai MA, Sentoku N (2004) Cloning, characterization and expression of OsGLN2, a rice endo-1, 3-β-glucanase gene regulated developmentally in flowers and hormonally in germinating seeds. Planta 220:129–139

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh F, Abdullah SNA, Khodavandi A, Abdullah F, Yusuf UK, Chong PP (2011) Differential expression of oil palm pathology genes during interactions with Ganoderma boninense and Trichoderma harzianum. J Plant Physiol 168(10):1106–1113

    Article  CAS  PubMed  Google Scholar 

  • Alström S (2001) Characteristics of bacteria from oilseed rape in relation to their biocontrol activity against Verticillium dahliae. J Phytopathol 149(2):57–64

    Article  Google Scholar 

  • Amir HG, Shamsuddin ZH, Halimi MS, Marziah M, Ramlan MF (2005) Enhancement in nutrient accumulation and growth of oil palm seedlings caused by PGPR under field nursery conditions. Commun Soil Sci Plant Anal 36(15–16):2059–2066

    Article  CAS  Google Scholar 

  • Aono R, Hammura M, Yamamoto M, Asano T (1995) Isolation of extracellular 28-and 42-kilodalton beta-1, 3-glucanases and comparison of three beta-1, 3-glucanases produced by Bacillus circulans IAM1165. Appl Environ Microbiol 61:122–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnesen LP, Fagerlund A, Granum PE (2008) From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32(4):579–606

    Article  CAS  Google Scholar 

  • Ash C, Farrow JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13(4):202–206

    Article  CAS  Google Scholar 

  • Azadeh BF, Meon S (2009) Molecular characterization of Pseudomonas aeruginosa UPM P3 from oil palm rhizosphere. Am J Appl Sci 6(11):1915

    Article  CAS  Google Scholar 

  • Bailey BA, Bae H, Strem MD, Crozier J, Thomas SE, Samuels GJ, Holmes KA (2008) Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biol Control 46(1):24–35

    Article  Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7(4):249–260

    PubMed  Google Scholar 

  • Bivi MR, Farhana MSN, Khairulmazmi A, Idris A (2010) Control of Ganoderma boninense: a causal agent of basal stem rot disease in oil palm with endophyte bacteria in vitro. Int J Agric Biol 12(6):833–839

    Google Scholar 

  • Carsolio C, Gutiérrez A, Jiménez B, Van Montagu M, Herrera-Estrella A (1994) Characterization of ech-42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. InProc Nat Acad Sc 91:10903–10907

    Article  CAS  Google Scholar 

  • Cazorla FM, Duckett SB, Bergstroem ET, Noreen S, Odijk R, Lugtenberg BJ, Thomas-Oates JE, Bloemberg GV (2006) Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol Plant-Microbe Interact 19:418–428

    Article  CAS  PubMed  Google Scholar 

  • Celestino SM, De Freitas SM, Medrano FJ, De Sousa MV, Ferreira Filho EX (2006) Purification and characterization of a novel pectinase from Acrophialophora nainiana with emphasis on its physicochemical properties. J Biotech 123:33–42

    Article  CAS  Google Scholar 

  • Chaverri P, Samuels GJ (2013) Evolution of host affiliation and substrate preference in the cosmopolitan fungal genus Trichoderma with evidence of interkingdom host jumps. Evolution 67:2823–2837

    PubMed  Google Scholar 

  • Chérif M, Benhamou N (1990) Cytochemical aspects of chitin breakdown during the parasitic action of a Trichoderma sp. on fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology 80:1406–1414

    Article  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, del Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Eco 92:16–21

    Google Scholar 

  • Cotxarrera L, Trillas-Gay MI, Steinberg C, Alabouvette C (2002) Use of sewage sludge compost and Trichoderma asperellum isolates to suppress fusarium wilt of tomato. Soil Biol Biochem 34(4):467–476

    Article  CAS  Google Scholar 

  • De Bentzmann S, Plésiat P (2011) The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environ Microbiol 13(7):1655–1665

    Article  PubMed  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:414764

    Google Scholar 

  • Droby S, Wisniewski M, Macarisin D, Wilson C (2009) Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol Technol 52(2):137–145

    Article  Google Scholar 

  • Ebrahim S, Usha K, Singh B (2011) Pathogenesis related (PR) proteins in plant defense mechanism. Sci Against Microb Pathog 2:1043–1054

    Google Scholar 

  • Edreva A (2005) Pathogenesis-related proteins: research progress in the last 15 years. Gen Appl Plant Physiol 31:105–124

    CAS  Google Scholar 

  • Elad Y, Chet I, Henis Y (1982) Degradation of plant pathogenic fungi by T. harzianum. Can J Microbiol 28:719–725

    Article  CAS  Google Scholar 

  • Francis I, Holsters M, Vereecke D (2010) The gram-positive side of plant–microbe interactions. Environ Microbiol 12(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Gajanayaka GM, Prasannath K, De Costa DM (2014) Variation of chitinase and β-1, 3-glucanase activities in tomato and chilli tissues grown under different crop management practices and agroecological regions. Proceed Peradeniya Univer Inter Res Sess 18:519

    Google Scholar 

  • Gajera HP, Bamharolia RP, Patel SV, Khatrani TJ, Goalkiya BA (2012) Antagonism of Trichoderma spp. against Macrophomina phaseolina: evaluation of coiling and cell wall degrading enzymatic activities. J Plant Pathol Microbiol 3:149

    Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotech 20:338–343

    Article  CAS  Google Scholar 

  • Guihen E, Glennon JD, Cullinane M, O'Gara F (2004) Rapid analysis of antimicrobial metabolites monoacetylphloroglucinol and 2,4-diacetylphloroglucinol using capillary zone electrophoresis. Electrophoresis 25:1536–1542

    Article  CAS  PubMed  Google Scholar 

  • Hariprasad P, Chandrashekar S, Singh SB, Niranjana SR (2014) Mechanisms of plant growth promotion and disease suppression by Pseudomonas aeruginosa strain 2apa. J Basic Microbiol 54(8):792–801

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2(1):43

    Article  CAS  PubMed  Google Scholar 

  • Hoster F, Schmitz JE, Daniel R (2005) Enrichment of chitinolytic microorganisms: isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel Streptomyces strain. Appl Microbiol Biotech 66:434–442

    Article  CAS  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  CAS  PubMed  Google Scholar 

  • Idris AS, Nasyarudin MN, Maizatul SM, Zaiton S (2010) Gano EB1-A fungal biocontrol agent for Ganoderma in oil palm. Bangi, MPOB Infor Ser, p 443

    Google Scholar 

  • Johri BN, Sharma A, Virdi JS (2003) Rhizobacterial diversity in India and its influence on soil and plant health. Adv Biochem Eng Biotechnol 84:49–89

    CAS  PubMed  Google Scholar 

  • Jorquera M, Martínez O, Maruyama F, Marschner P, de la Luz Mora M (2008) Current and future biotechnological applications of bacterial phytases and phytase producing bacteria. Microbes Environ 23:182–191

    Article  PubMed  Google Scholar 

  • Kacprzak MJ, Rosikon K, Fijalkowski K, Grobelak A (2014) The effect of Trichoderma on heavy metal mobility and uptake by Miscanthus giganteus, Salix sp., Phalaris arundinacea, and Panicum virgatum. Appl Env Soil Sci:74–83

    Google Scholar 

  • Kim TG, Knudsen GR (2013) Relationship between the biocontrol fungus Trichoderma harzianum and the phytopathogenic fungus fusarium solani f. sp. pisi. Appl Soil Ecol 68:57–60

    Article  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005) Phylloplane bacteria increase seedling emergence, growth and yield of field-grown groundnut (Arachis hypogaea L.). Lett Appl Microbiol 40(4):260–268

    Article  CAS  PubMed  Google Scholar 

  • Kotze C, Van Niekerk J, Mostert L, Halleen F, Fourie P (2011) Evaluation of biocontrol agents for grapevine pruning wound protection against trunk pathogen infection. Phytopathol Mediterr 50:S247–S263

    Google Scholar 

  • Leelasuphakul W, Sivanunsakul P, Phongpaichit S (2006) Purification, characterization and synergistic activity of β-1, 3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight. Enzyme Microb Technol 38:990–997

    Article  CAS  Google Scholar 

  • Lim P, Gansau JA, Chong KP (2019) Biocontrol of basal stem rot pathogen, Ganoderma boninense by Pseudomonas aeruginosa. Bangladesh J Botany 48(2):209–215

    Article  Google Scholar 

  • Manjula K, Podile AR (2005) Production of fungal cell wall degrading enzymes by a biocontrol strain of Bacillus subtilis AF 1. Ind J Exp Biol 43:892–896

    CAS  Google Scholar 

  • McNeil M, Darvill AG, Fry SC, Albersheim P (1984) Structure and function of the primary cell walls of plants. Annu Rev Biochem 53:625–663

    Article  CAS  PubMed  Google Scholar 

  • Miller RN, Holderness M, Bridge PD, Chung GF, Zakaria MH (1999) Genetic diversity of Ganoderma in oil palm plantings. Plant Pathol 48:595–603

    Article  Google Scholar 

  • Musa H, Hassan MA, Isyaku MS, Halidu J, Suleiman AS (2017) Antagonistic potential of Trichoderma species against Ganoderma disease of oil palm. Nig J Agr Food Env 13:60–66

    Google Scholar 

  • Musa H, Nusaibah SA, Khairulmazmi A (2018) Assessment on Trichoderma spp. mixture as a potential biocontrol agent of Ganoderma boninense infected oil palm seedlings. J Oil Palm Res 30(3):403–415

    CAS  Google Scholar 

  • Naher L, Ho CL, Tan SG, Yusuf UK, Abdullah F (2011) Cloning of transcripts encoding chitinases from Elaeis guineensis Jacq. And their expression profiles in response to fungal infections. Physiol Mol Plant Pathol 76:96–103

    Article  CAS  Google Scholar 

  • Naher L, Yusuf UK, Siddiquee S, Ferdous J, Rahman MA (2012) Effect of media on growth and antagonistic activity of selected Trichoderma strains against Ganoderma. Afric J Microbiol Res 6:7449–7453

    Article  Google Scholar 

  • Naher L, Yusuf UK, Ismail A, Hossain K (2014) Trichoderma spp.: a biocontrol agent for sustainable management of plant diseases. Pak J Bot 46:1489–1493

    Google Scholar 

  • Nawani NN, Kapadnis BP, Das AD, Rao AS, Mahajan SK (2002) Purification and characterization of a thermophilic and acidophilic chitinase from Microbispora sp. V2. J Appl Microbiol 93:965–975

    Article  CAS  PubMed  Google Scholar 

  • Nusaibah SA, Saad G, Hun TG (2017) Antagonistic efficacy of Trichoderma harzianum and Bacillus cereus against Ganoderma disease of oil palm via dip, place and drench (DPD) artificial inoculation technique. Inter J Agricul Biol 19(2)

    Google Scholar 

  • Paul D, Sarma YR (2006) Plant growth promoting rhizhobacteria (PGPR) mediated root proliferation in black pepper (Piper nigrum L.) as evidenced through GS root software. Arch Phyto Plant Protect 39:311–314

    CAS  Google Scholar 

  • Pérez-García A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of bacilli in agriculture. Curr Opin Biotechnol 22:187–193

    Article  PubMed  CAS  Google Scholar 

  • Prasannath K, De Costa DM, Hemachandra KS (2014) Quantification of peroxidase activity in chili tissues grown under two crop protection systems across a temperature gradient. InProc HETC Symp, p 102

    Google Scholar 

  • Ramli NR, Mohamed MS, Seman IA, Zairun MA, Mohamad M (2016) The potential of endophytic bacteria as a biological control agent for Ganoderma disease in oil palm. Sains Malaysiana 45(3):401–409

    CAS  Google Scholar 

  • Ribeiro NF, Heath CH, Kierath J, Rea S, Duncan-Smith M, Wood FM (2010) Burn wounds infected by contaminated water: case reports, review of the literature and recommendations for treatment. Burns 36(1):9–22

    Article  PubMed  Google Scholar 

  • Saima M, Kuddus M, Roohi I, Ahmad IZ (2013) Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. J Gen Eng Biotech 11:39–46

    Article  Google Scholar 

  • Santos P, Fortunato A, Ribeiro A, Pawlowski K (2008) Chitinases in root nodules. Plant. Biotech 25:299–307

    CAS  Google Scholar 

  • Sariah M, Cjoo CW, Zakaria H, Norihan MS (2005) Quantification and characterization of Trichoderma spp. from different ecosystems. Mycopathologia 159:113–117

    Article  CAS  PubMed  Google Scholar 

  • Sela-Buurlage MB, Ponstein AS, Bres-Vloemans SA, Melchers LS, van den Elzen PJ, Cornelissen BJ (1993) Only specific tobacco (Nicotiana tabacum) chitinases and [beta]-1, 3-glucanases exhibit antifungal activity. Plant Physiol 101:857–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seneviratne DM, Prasannath K, De Costa DM (2014) Quantification of phenylalanine ammonia lyase activity in tomato and chili tissues grown under different crop management practices and agro-ecological regions in Sri Lanka. InProc 1st Fac of Agric Undergra res Symp, pp. 3

    Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48(1):21–43

    Article  CAS  PubMed  Google Scholar 

  • Sikorski P, Sørbotten A, Horn SJ, Eijsink VG, VÃ¥rum KM (2006) Serratia marcescens chitinases with tunnel-shaped substrate-binding grooves show endo activity and different degrees of processivity during enzymatic hydrolysis of chitosan. Biochemist 45:9566–9574

    Article  CAS  Google Scholar 

  • Silipo A, Erbs G, Shinya T, Dow JM, Parrilli M, Lanzetta R, Shibuya N, Newman MA, Molinaro A (2010) Glyco-conjugates as elicitors or suppressors of plant innate immunity. Glycobiol 20:406–419

    Article  CAS  Google Scholar 

  • Stintzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B (1993) Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens. Biochimie 75:687–706

    Article  CAS  PubMed  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Lavakush SV (2010) Impact of plant growth promoting rhizobacteria on crop production. Inter J Agricul Res 5(11):954–983

    Article  Google Scholar 

  • Viterbo A, Montero M, Ramot O, Friesem D, Monte E, Llobell A, Chet I (2002) Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). Curr Genet 42(2):114–122

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Knill E, Glick BR, Défago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gac a derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Kasahara NO, Aida KA, Tanaka HI (1992) Three N-terminal domains of beta-1, 3-glucanase A1 are involved in binding to insoluble beta-1, 3-glucan. J Bacteriol 174:186–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito MV (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8:71–126

    Article  Google Scholar 

  • Yang CA, Cheng CH, Lo CT, Liu SY, Lee JW, Peng KC (2011) A novel L-amino acid oxidase from Trichoderma harzianum ETS 323 associated with antagonism of Rhizoctonia solani. J Agric Food Chem 59(9):4519–4526

    Article  CAS  PubMed  Google Scholar 

  • Yeoh KA, Othman A, Meon S, Abdullah F, Ho CL (2012) Sequence analysis and gene expression of putative exo-and endo-glucanases from oil palm (Elaeis guineensis) during fungal infection. J Plant Physiol 169:1565–1570

    Article  CAS  PubMed  Google Scholar 

  • Zaiton S, Sariah M, Zainal Abidin MA (2008) Effect of endophytic bacteria on growth and suppression of Ganoderma infection in oil palm. Inter J Agric Biol 10:127–132

    Google Scholar 

  • Zakry FAA, Shamsuddin ZH, Rahim KA, Zakaria ZZ, Rahim AA (2012) Inoculation of Bacillus sphaericus UPMB-10 to young oil palm and measurement of its uptake of fixed nitrogen using the 15N isotope dilution technique. Microbes Environ 27(3):257–262

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was supported financially by the Fundamental Research Grant Scheme (FRGS), administered through the Ministry of Higher Education, Malaysia (Grant No: FRGS/1/2018/5540093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nusaibah Syd Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, N.S., Syafiq, T.M., Saad, M.M. (2022). Induction of Hydrolytic Enzymes: A Criterion for Biological Control Candidates against Fungal Pathogen. In: Sayyed, R., Singh, A., Ilyas, N. (eds) Antifungal Metabolites of Rhizobacteria for Sustainable Agriculture. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-031-04805-0_11

Download citation

Publish with us

Policies and ethics