Skip to main content

Boltzmann Equation in Aggregation Kinetics

  • Chapter
  • First Online:
Nonequilibrium Thermodynamics and Fluctuation Kinetics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 208))

  • 629 Accesses

Abstract

We consider the application of the Boltzmann equation to aggregation kinetics, where the transport mechanism is the ballistic motion of particles. This refers to molecular gases, granular gases, and, hypothetically, dark matter. Two aggregation models are analyzed—random and impact energy-dependent aggregation. The latter is associated with different interparticle forces responsible for agglomeration. We start from the Boltzmann equation governing the evolution of the mass–velocity distribution functions of different species—the agglomerates of different sizes and derive generalized Smoluchowski equations. These describe the time dependence of the agglomerates densities and their mean kinetic energy (partial temperatures). We obtain exact solutions to these equations for simplified cases and develop a scaling theory for the asymptotic behavior of the system. We explore numerically, the agglomeration kinetics and observe a very rich behavior of the system. We reveal new surprising regimes and construct the according kinetic phase diagram. The scaling theory is in excellent agreement with the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We assume that the aggregates are spherical and compact; the generalization for fractal aggregates is straightforward.

  2. 2.

    Note that the constant may be always set to one using the appropriate time units.

References

  1. L. Boltzmann, Leçons sur la théorie des gaz (Gauthier-Villars, Paris, 1902–1905)

    Google Scholar 

  2. N.V. Brilliantov, T. Pöschel, Kinetic Theory of Granular Gases (Oxford University Press, Oxford, 2004)

    Book  MATH  Google Scholar 

  3. V. Garzo, Granular Gaseous Flows (Springer Nature Switzerland AG, Cham, Switzerland, 2019)

    Book  MATH  Google Scholar 

  4. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge University Press, New York, 1970)

    MATH  Google Scholar 

  5. J. Ferziger, H. Kaper, The Mathematical Theory of Transport Processes in Gases (North-Holland, Amsterdam, 1972)

    Google Scholar 

  6. F. Spahn, N. Albers, M. Sremcevic, C. Thornton, Europhys. Lett. 67, 545 (2004)

    Article  ADS  Google Scholar 

  7. L. Esposito, Planetary Rings (Cambridge University Press, Cambridge, UK, 2006)

    Google Scholar 

  8. N.V. Brilliantov, A.S. Bodrova, P.L. Krapivsky, J. Stat. Mech. P06011 (2009)

    Google Scholar 

  9. N.V. Brilliantov, P.L. Krapivsky, A. Bodrova, F. Spahn, H. Hayakawa, V. Stadnichuk, J. Schmidt, Proc. Natl. Acad. Sci. USA 112, 9536 (2015)

    Article  ADS  Google Scholar 

  10. N.V. Brilliantov, A.I. Osinsky, P.L. Krapivsky, Phys. Rev. E 102, 042909 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  11. E. Hardy, R. Lasenby, J. March-Russell, S.W. West, JHEP 06, 011 (2015)

    Article  ADS  Google Scholar 

  12. G. Krnjaic, K. Sigurdson, Phys. Lett. B 751, 464 (2015)

    Article  ADS  Google Scholar 

  13. M.I. Gresham, H.K. Lou, K.M. Zurek, Phys. Rev. D 97, 036003 (2018)

    Article  ADS  Google Scholar 

  14. P.L. Krapivsky, A. Redner, E. Ben-Naim, A Kinetic View of Statistical Physics (Cambridge University Press, Cambridge, UK, 2010)

    Book  MATH  Google Scholar 

  15. C. Thuroff, F. Weber, E. Frey, Phys. Rev. X 4, 041030 (2014)

    Google Scholar 

  16. G.R. Hidy, J.R. Brock, The Dynamics of Aerocolloidal Systems, International Reviews in Aerosol Physics and Chemistry (Pergamon Press, Oxford, 1970)

    Google Scholar 

  17. R.L. Drake, in G.M. Hidy, J.R. Brock (eds.), Topics in Current Aerosol Research, vol. 3, part 2 (Pergamon Press, New York, 1972)

    Google Scholar 

  18. R.C. Shrivastava, J. Atom. Sci. 39, 1317 (1982)

    Article  ADS  Google Scholar 

  19. S.K. Friedlander, Smoke, Dust and Haze (Oxford University Press, Oxford, 2000)

    Google Scholar 

  20. G.B. Field, W.C. Saslaw, Astrophys. J. 142, 568 (1965)

    Article  ADS  Google Scholar 

  21. J.J. Lissauer, Ann. Rev. Astron. Astrophys. 31, 129 (1993)

    Article  ADS  Google Scholar 

  22. A. Chokshi, A.G.G. Tielens, D. Hollenbach, Astrophys. J. 407, 806 (1993)

    Article  ADS  Google Scholar 

  23. C. Dominik, A.G.G. Tielens, Astrophys. J. 480, 647 (1997)

    Article  ADS  Google Scholar 

  24. V. Ossenkopf, Astron. Astrophys. 280 (1993)

    Google Scholar 

  25. M.V. Smoluchowski, Z. Phys. Chem. 92, 129 (1917)

    Google Scholar 

  26. F. Leyvraz, Phys. Rep. 383, 95 (2003)

    Article  ADS  Google Scholar 

  27. G.F. Carnevale, Y. Pomeau, W.R. Young, Phys. Rev. Lett. 64, 2913 (1990)

    Article  ADS  Google Scholar 

  28. E. Trizac, J.P. Hansen, Phys. Rev. Lett. 74, 4114 (1995)

    Article  ADS  Google Scholar 

  29. L. Frachebourg, Phys. Rev. Lett. 82, 1502 (1999)

    Article  ADS  Google Scholar 

  30. L. Frachebourg, P.A. Martin, J. Piasecki, Phys. A 279 (2000)

    Google Scholar 

  31. L. Frachebourg, P. Martin, J. Piasecki, Phys. A 279, 69 (2000)

    Article  Google Scholar 

  32. E. Trizac, P.L. Krapivsky, Phys. Rev. Lett. 91, 218302 (2003)

    Article  ADS  Google Scholar 

  33. N.V. Brilliantov, F. Spahn, Math. Comput. Simul. 72, 93 (2006)

    Article  Google Scholar 

  34. N.V. Brilliantov, A. Formella, T. Pöschel, Nat. Commun. 9, 797 (2018)

    Article  ADS  Google Scholar 

  35. J. Midya, S.K. Das, Phys. Rev. Lett. 118, 165701 (2017)

    Article  ADS  Google Scholar 

  36. S. Paul, S.K. Das, Phys. Rev. E 97, 032902 (2018)

    Article  ADS  Google Scholar 

  37. C. Singh, M.G. Mazza, Sci. Rep. 9, 9049 (2019)

    Article  ADS  Google Scholar 

  38. C. Singh, M.G. Mazza, Phys. Rev. E 97, 022904 (2018)

    Article  ADS  Google Scholar 

  39. V. Garzo, J.W. Dufty, Phys. Rev. E 59, 5895 (1999)

    Article  ADS  Google Scholar 

  40. N.V. Brilliantov, N. Albers, F. Spahn, T. Pöschel, Phys. Rev. E 76, 051302 (2007)

    Article  ADS  Google Scholar 

  41. A. Ivelv, G. Morfill, U. Konopka, Phys. Rev. Lett. 89, 195502 (2002)

    Article  ADS  Google Scholar 

  42. A.I. Osinsky and N.V. Brilliantov, Exact solutions of temperature-dependent Smoluchowski equations, Unpublished (2022)

    Google Scholar 

  43. P.G.J. van Dongen, M.H. Ernst, Phys. Rev. Lett. 54, 1396 (1985)

    Article  ADS  Google Scholar 

  44. A.I. Osinsky, J. Comput. Phys. 422, 109764 (2020)

    Article  MathSciNet  Google Scholar 

  45. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford University Press, Oxford, 1994)

    Google Scholar 

  46. M. Hopkins, H. Shen, J. Fluid Mech. 244, 477 (1992)

    Article  ADS  Google Scholar 

  47. J.M. Montanero, A. Santos, Phys. Rev. E 54, 438 (1996)

    Article  ADS  Google Scholar 

  48. J.M. Montanero, A. Santos, Phys. Fluids 9, 2057 (1997)

    Article  ADS  Google Scholar 

  49. J.J. Brey, M.J. Ruiz-Montero, Comput. Phys. Commun. 121/122, 278 (1999)

    Google Scholar 

  50. J.M. Montanero, V. Garzo, A. Santos, J.J. Brey, J. Fluid Mech. 389, 391 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  51. J.J. Brey, D. Cubero, Lecture Notes in Physics, vol. 564 (2001), p. 59

    Google Scholar 

  52. T. Pöschel, T. Schwager, Computational Granular Dynamics: Models and Algorithms (Springer, Berlin, 2005)

    Google Scholar 

  53. A.I. Osinsky, N.V. Brilliantov, Phys. Rev. E. 105, 034119 (2022)

    Google Scholar 

  54. A. Kalinov, A.I. Osinsky, S.A. Matveev, W. Otieno, N.V. Brilliantov, arXiv:2103.09481 (2021)

  55. D. Gillespie, J. Comput. Phys. 22, 403 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  56. A. Garcia, L. Alejandro, C. van den Broeck, M. Aertsens, R. Serneels, Phys. A 143, 535 (1987)

    Article  Google Scholar 

  57. A. Eibeck, W. Wagner, SIAM J. Sci. Comput. 22, 802 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  58. S. Matveev, P. Krapivsky, A. Smirnov, E. Tyrtyshnikov, N. Brilliantov, Phys. Rev. Lett. 119, 260601 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  59. S. Matveev, N. Ampilogova, V. Stadnichuk, E. Tyrtyshnikov, A. Smirnov, N. Brilliantov, Comp. Phys. Commun. 224, 154 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The study was supported by a grant from the Russian Science Foundation No. 21-11-00363, https://rscf.ru/project/21-11-00363/. We also thank the German Science Foundation (DFG) for funding through Grant P0472/40-1 and the Interdisciplinary Center for Nanostructured Films (IZNP). Support from ZISC and IZ-FPS at FAU Erlangen–Nürnberg is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai V. Brilliantov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brilliantov, N.V., Osinsky, A.I., Pöschel, T. (2022). Boltzmann Equation in Aggregation Kinetics. In: Brenig, L., Brilliantov, N., Tlidi, M. (eds) Nonequilibrium Thermodynamics and Fluctuation Kinetics. Fundamental Theories of Physics, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-031-04458-8_10

Download citation

Publish with us

Policies and ethics