Skip to main content
  • 202 Accesses

Abstract

Climate change and increasing global concerns about environmental emissions pose challenges for energy policymakers. Understanding the complex and dynamic nature of energy supply and demand systems is an essential prerequisite for effective policy decisions. In particular, meeting the targets of the reduction of CO2 emissions and achieving a low-carbon economy requires an integrated system-wide assessment of existing energy policies. Although, prior studies, utilizing various modeling and simulation methods and approaches, have been applied to explore the role of non-thermal power in the reduction of CO2 emissions in the PIS region, the long-term impact of increased nuclear generation in CO2 emissions reduction and achieving a low carbon economy of Pakistan still needs to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    PIS: Pakistan, India, Saudi Arabia.

  2. 2.

    INDCs: Intended Nationally Determined Contributions.

  3. 3.

    PA: Paris Agreement.

  4. 4.

    OECD: Organization for Economic Co-operation and Development.

  5. 5.

    SDGs: Sustainable Development Goals.

  6. 6.

    CCS: Carbon Capture and Storage.

References

  • Abada, I., Briat, V., & Massol, O. (2013). Construction of a fuel demand function portraying inter-fuel substitution, a system dynamics approach. Energy, 49, 240–251.

    Article  Google Scholar 

  • Akbar, M., Thaheem, M., & Arshad, H. (2017). Life cycle sustainability assessment of electricity generation in Pakistan: Policy regime for a sustainable energy mix. Energy Policy, 11(1), 111–126.

    Article  Google Scholar 

  • Al-Sarihi, A., & Bello, A. (2020). Socio-economic and environmental implications of renewable energy integrity in Oman: Scenario modeling using system dynamics approach. In H. Qudrat-Ullah & A. Kayal (Eds), Climate change and energy dynamics in the Middle East. Springer.

    Google Scholar 

  • Amro, M., & Peerbocus, N. (2020). Electric vehicle deployment and carbon emissions in Saudi Arabia: A power system perspective. The Electricity Journal, 33(6), 106774.

    Article  Google Scholar 

  • Dubash, K., Khosla, R., Rao, D., & Bhardwaj, A. (2018). India’s energy and emissions future: An interpretive analysis of model scenarios. Environmental Research Letters, 13(7), 074018.

    Article  Google Scholar 

  • Dyner, I. (2000). Energy modelling platforms for policy and strategy support. Journal of the Operational Research Society, 51(2): 136–144.

    Google Scholar 

  • Dyner, I., & Bunn, D. (1997). A simulation platform to analyze market liberalization and integrated energy conservation policies in Colombia. Energy Policy, 259–271.

    Google Scholar 

  • Ford, A. (1997). System dynamics and the electric power industry. System Dynamics Review, 13, 57–85.

    Article  Google Scholar 

  • Forrester, J. W. (1961). Industrial dynamics. MIT Press.

    Google Scholar 

  • Forrester, J. W. (1962). Industrial dynamics. MIT Press.

    Google Scholar 

  • Gholizad, A., Ahmadi, L., Hassannayebi, E., Memarpour, M., & Shakibayifar, M. (2017). A system dynamics model for the analysis of the deregulation in electricity market. International Journal of System Dynamics Applications, 6(2), 1–30.

    Article  Google Scholar 

  • Gomez, C., Arango-Aramburo, S., & Larsen, E. (2017). Construction of a Chilean energy matrix portraying energy source substitution: A system dynamics approach. Journal of Cleaner Production, 162, 903–913.

    Article  Google Scholar 

  • IRENA. (2020). Global landscape of renewable energy finance, 2020, international renewable energy agency. Abu Dhabi. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Nov/IRENA_CPI_Global_finance_2020.pdf. Accessed 30 Oct 2021.

  • Irfan, M., et al. (2020). Assessing the energy dynamics of Pakistan: Prospects of biomass energy. Energy Reports, 6, 80–93.

    Article  Google Scholar 

  • Jahangir, M., Mostafaeipour, A., Habib, H., Saghaei, H., & Waqar, A. (2021). Effect of emission penalty and annual interest rate on cogeneration of electricity, heat, and hydrogen in Karachi: 3E Assessment and sensitivity analysis. Journal of Engineering, Article ID 6679358, 1–16. https://doi.org/10.1155/2021/6679358. Accessed 30 July 2021.

  • Laimon, M., Mai, T., Goh, S., & Yousuf, T. (2020). Energy sector development: System dynamics analysis. Applied Sciences, 10, 134.

    Article  Google Scholar 

  • Luqman, M., Ahmad, N., & Bakhsh, K. (2019). Nuclear energy, renewable energy and economic growth in Pakistan: Evidence from a non-linear autoregressive distributed lag model. Renewable Energy, 139, 299–1309.

    Article  Google Scholar 

  • Mahmood, H., Alkhateeb, Y., & Furqan, M. (2020). Oil sector and CO2 emissions in Saudi Arabia: Asymmetry analysis. Palgrave Communications, 6, 88.

    Google Scholar 

  • Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: A review. Frontiers in Public Health, 8, 14. https://doi.org/10.3389/fpubh.2020.00014

    Article  Google Scholar 

  • Mengal, A., Mirjat, H., Walasai, D., Khatri, A., Harijan, K., & Kaili, A. (2019a). Modeling of future electricity generation and emissions assessment for Pakistan. Processes, 7(212), 1–26.

    Google Scholar 

  • Mengal, A., Mirjat, H., Walasai, D., Khatri, A., Harijan, K., & Kaili, M. (2019b). A Modeling of future electricity generation and emissions assessment for Pakistan. Processes, 7(212), 1–26.

    Google Scholar 

  • Moxnes, E. (1990). Inter-fuel substitution in OECD—European electricity production. System Dynamics Review, 6(1), 44–65.

    Article  Google Scholar 

  • Naill, F. (1992). A system dynamics model for national energy policy planning. System Dynamics Review, 8(1), 1–19.

    Article  Google Scholar 

  • Nasirov, N., O’Ryan, R., & Osorio, H. (2020). Decarbonization tradeoffs: A dynamic general equilibrium modeling analysis for the Chilean power sector. Sustainability, 12, 8248.

    Article  Google Scholar 

  • Naz, S., Sultan, R., Zaman, K., et al. (2019). Moderating and mediating role of renewable energy consumption, FDI inflows, and economic growth on carbon dioxide emissions: Evidence from the robust least square estimator. Environmental Science and Pollution Research, 26, 2806–2819.

    Article  Google Scholar 

  • Panda, D. (2011). Impact of renewable energy sources in the power supply of India—A system dynamics approach. International Journal of Power System Operation and Energy Management, 2(3, 4), 2231–4407.

    Google Scholar 

  • Pandey, K., & Rastogi, H. (2019). Effect of energy consumption & economic growth on environmental degradation in India: A time series modeling. Energy Procedia, 158, 4232–4237.

    Article  Google Scholar 

  • Park, Y., Ahn, S., Yoon, B., Koh, H., & Bunn, W. (2007). Investment incentives in the Korean electricity market. Energy Policy, 35(11), 5819–5828.

    Article  Google Scholar 

  • Qudrat-Ullah, H. (2013). Understanding the dynamics of electricity generation capacity in Canada: A system dynamics approach. Energy, 59, 285–294.

    Article  Google Scholar 

  • Qudrat-Ullah, H. (2015a). Independent power (or pollution) producers? Electricity reforms and IPPs in Pakistan. Energy, 83(1), 240–251.

    Article  Google Scholar 

  • Qudrat-Ullah, H. (2015b). Modeling and simulation in service of energy policy. Energy Procedia, 75, 2819–2825.

    Article  Google Scholar 

  • Qudrat-Ullah, H. (2017). How to enhance the future use of energy policy simulation models through ex-post validation. Energy, 120(1), 48–66.

    Google Scholar 

  • Qudrat-Ullah, H. (2022). A review and analysis of renewable energy policies and CO2 emissions of Pakistan. Energy, 238, 121849.

    Article  Google Scholar 

  • Qudrat-Ullah, H., Akrofi, M., & Kayal, A. (2020). Analyzing actors’ engagement in sustainable energy planning at the local level in Ghana: An empirical study. Energies, 13(2020), 1–29.

    Google Scholar 

  • Raggad, B. (2018). Carbon dioxide emissions, economic growth, energy use, and urbanization in Saudi Arabia: Evidence from the ARDL approach and impulse saturation break tests. Environmental Science and Pollution Research, 25(15), 14882–14898.

    Article  Google Scholar 

  • Rashid, M. I., Benhelal, E., & Rafiq, S. (2020). Reduction of greenhouse gas emissions from gas, oil, and coal power plants in pakistan by carbon capture and storage (CCS): A review. Chem Eng Rev, 43(11), 2140–2148.

    Google Scholar 

  • Raza, M. Y., & Lin, B. (2020). Decoupling and mitigation potential analysis of CO2 emissions from Pakistan’s transport sector. Science of the Total Environment, 30, 139000.

    Article  Google Scholar 

  • Rehman, U., Cai, Y., Siyal, Z. A., Mirjat, N. H., Fazal, R., & Kashif, S. U. R. (2020). Cleaner and sustainable energy production in Pakistan: Lessons learnt from the Pak-TIMES Model. Energies, 13(108), 1–21.

    Google Scholar 

  • Rue du Can, S., Khandekar, A., Abhyankar, N., Phadke, A., Khanna, N., Fridley, D., & Zhou, N. (2019). Modeling India’s energy future using a bottom-up approach. Applied Energy, 238, 1108–1125.

    Article  Google Scholar 

  • Samargandi, N. (2017). Sector value addition, technology, and CO2 emissions in Saudi Arabia. Renewable and Sustainable Energy Reviews, 78, 868–877.

    Article  Google Scholar 

  • Saysel, K., & Hekimoglu, M. (2013). Exploring the options for carbon dioxide mitigation in Turkish electric power industry: System dynamics approach. Energy Policy, 60, 675–686.

    Article  Google Scholar 

  • Shafiei, E., Davidsdottir, B., Leaver, J., Stefansson, H., & Asgeirsson, E. I. (2015). Simulation of alternative fuel markets using integrated system dynamics model of the energy system. Procedia Computer Science, 51, 513–521.

    Article  Google Scholar 

  • Shahzada, M., Nawaz, N., & Alvi, S. (2021). Energy security for socio-economic and environmental sustainability in Pakistan. Heliyon, 4, e00854. https://www.cell.com/action/showPdf?pii=S2405-8440%2818%2932303-X. Accessed 20 Jan 2021.

  • Shearer, C., Fofrich, R., & Davis, J. (2017). Future CO2 emissions and electricity generation from proposed coal-fired power plants in India: Proposed coal plants in India. Earth’s Future, 5, 408–446.

    Article  Google Scholar 

  • Sisodia, G. S., Sahay, M., & Singh, P. (2016). System dynamics methodology for the energy demand fulfillment in India: A preliminary study. Energy Procedia, 95, 429–434.

    Article  Google Scholar 

  • Sterman, J. (2000). Business dynamics: Systems thinking and modeling for a complex world. McGraw-Hill.

    Google Scholar 

  • Tiewsoh, S., Jirásek, J., & Sivek, M. (2019). Electricity generation in India: Present state, future outlook and policy implications. Energies, 12, 1361. https://doi.org/10.3390/en12071361

  • Uddin, R., Shaikh, A. J., Khan, H. R., Shirazi, M. A., Rashid, A., & Qazi, S. A. (2021). Renewable energy perspectives of Pakistan and Turkey: Current analysis and policy recommendations. Sustainability, 13, 3349. https://doi.org/10.3390/su13063349

  • Usman, A., Ullah, S., Ozturk, I., Chishti, M. Z., & Zafar, S. M. (2020). Analysis of asymmetries in the nexus 769 among clean energy and environmental quality in Pakistan. Environmental Science and Pollution Research, 1–12(771), 63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Qudrat-Ullah .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qudrat-Ullah, H. (2022). Simulation and Modeling in Service of Energy Systems. In: Understanding the Dynamics of Nuclear Power and the Reduction of CO2 Emissions. Springer, Cham. https://doi.org/10.1007/978-3-031-04341-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04341-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04340-6

  • Online ISBN: 978-3-031-04341-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics