Skip to main content

Optimal Experimental Design for Physicochemical Models: A Partial Review

  • Chapter
  • First Online:
Trends in Mathematical, Information and Data Sciences

Abstract

This paper presents a partial review of optimal experimental design applied to physicochemical models. The goal is to serve as an introduction to the discipline for all those who carry out laboratory experiments observing phenomena related to physical chemistry. The optimal design of experiments does not make sense unless the proposed designs can be implemented in practice, and therefore the involvement of the experimenters is essential. This chapter provides a motivated introduction to optimal experimental design, as well as some of the results obtained by applying these techniques to widely used physicochemical models: the Michaelis-Menten model used in the kinetics of enzyme systems; the Arrhenius model used to describe the relationship between the rate of a chemical reaction and the temperature; adsorption isotherms that describe adsorption equilibrium, and the Tait equation, which characterizes relations between the pressure, volume and temperature of gases, liquids and mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amo-Salas, M., Martín-Martín, R., Rodríguez-Aragón, L.J.: Design of experiments for zeroth and first-order reaction rates. Biom. J. 56, 792–807 (2014)

    Article  MathSciNet  Google Scholar 

  2. Baran, S., Sikolya, K., Stehlík, M.: Optimal designs for the methane flux in troposphere. Chemom. Intell. Lab. Syst. 146, 407–417 (2015)

    Article  Google Scholar 

  3. Burkholder, J.B., Sander, S.P., Abbatt, J., Barker, J.R., Cappa, C., Crounse, J.D., Dibble, T.S., Huie, R.E., Kolb, C.E., Kurylo, M.J., Orkin, V.L., Percival, C.J., Wilmouth, D.M., Wine, P.H.: Chemical kinetics and photochemical data for use in atmospheric studies, Evaluation No. 19. JPL Publication (2019). http://jpldataeval.jpl.nasa.gov

  4. Chaloner, K., Verdinelli, I.: Bayesian experimental design: a review. Stat. Sci. 10, 273–304 (1995)

    Article  MathSciNet  Google Scholar 

  5. Chernoff, H.: Locally optimal designs for estimating parameters. Ann. Math. Stat. 24, 586–602 (1953)

    Article  MathSciNet  Google Scholar 

  6. Chernoff, H.: Approaches in Sequential Design of Experiments in a Survey of Statistical Design and Linear Models. North-Holland, New York (1975)

    MATH  Google Scholar 

  7. Dette, H., Biedermann, S.: Robust and efficient designs for the Michaelis-Menten model. J. Am. Stat. Assoc. 98, 679–686 (2003)

    Article  MathSciNet  Google Scholar 

  8. Dette, H., Kunert, J.: Optimal designs for the Michaelis-Menten model with correlated observations. Statistics 48, 1254–1267 (2014)

    Article  MathSciNet  Google Scholar 

  9. Dette, H., Melas, V.B., Wong, W.K.: Optimal design for goodness-of-fit of the Michaelis-Menten enzyme kinetic function. J. Am. Stat. Assoc. 100, 1370–1381 (2005)

    Article  MathSciNet  Google Scholar 

  10. DIPPR Project 801 (2021). http://www.aiche.org/dippr

  11. Dortmund Data Bank (2021). http://www.ddbst.com

  12. Fedorov, V.V., Leonov, S.L.: Optimal Design for Nonlinear Response Models. CRC Press, Boca Raton (2014)

    MATH  Google Scholar 

  13. Fisher, R.A.: On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. A 222, 309–368 (1922)

    Article  Google Scholar 

  14. Ford, I., Titterington, D.M., Kitsos, C.P.: Recent advances in nonlinear experimental design. Technometrics 31, 49–60 (1989)

    Article  MathSciNet  Google Scholar 

  15. Kiefer, J.: Optimum experimental designs. J. Roy. Stat. Soc. Ser. B 21, 272–319 (1959)

    MathSciNet  MATH  Google Scholar 

  16. Kiefer, J., Wolfowitz, J.: The equivalence of two extremum problems. Can. J. Math. 12, 363–366 (1960)

    Article  MathSciNet  Google Scholar 

  17. Kitsos, C.P., Kolovos, K.G.: A compilation of the D-optimal designs in chemical kinetics. Chem. Eng. Commun. 200, 185–204 (2013)

    Article  Google Scholar 

  18. Kober, R., Schwaab, M., Steffani, E., Barbosa-Coutinho, E., Pinto, J.C., Alberton, A.L.: D-optimal experimental designs for precise parameter estimation of adsorption equilibrium models. Chemom. Intell. Lab. Syst. 192, 103823 (2021)

    Article  Google Scholar 

  19. López-Fidalgo, J., Rodríguez-Díaz, J.M.: Elfving’s method for m-dimensional models. Metrika 59, 235–244 (2004)

    Article  MathSciNet  Google Scholar 

  20. López-Fidalgo, J., Tommasi, C., Trandafir, P.C.: An optimal experimental design criterion for discriminating between non-normal models. J. Roy. Stat. Soc. Ser. B 69, 231–242 (2007)

    Article  MathSciNet  Google Scholar 

  21. López-Fidalgo, J., Tommasi, C., Trandafir, P.C.: Optimal designs for discriminating between some extensions of the Michaelis-Menten model. J. Stat. Plan Infer. 138, 3797–3804 (2008)

    Article  MathSciNet  Google Scholar 

  22. López-Fidalgo, J., Wong, W.K.: Design issues for the Michaelis-Menten model. J. Theor. Biol. 215, 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  23. Mannarswamy, A., Munson-McGee, S.H., Steiner, R., Andersen, P.K.: D-optimal experimental designs for Freundlich and Langmuir adsorption isotherms. Chemom. Intell. Lab. Syst. 97, 146–151 (2009)

    Article  Google Scholar 

  24. Mariñas-Collado, I., Rivas-López, M.J., Rodríguez-Díaz, J.M., Santos-Martín, M.T.: Optimal designs in enzymatic reactions with high-substrate inhibition. Chemom. Intell. Lab. Syst. 189, 102–109 (2019)

    Article  Google Scholar 

  25. Martín-Martín, R., Dorta-Guerra, R., Torsney, B.: Multiplicative algorithm for discriminating between Arrhenius and non-Arrhenius behaviour. Chemom. Intell. Lab. Syst. 139, 146–155 (2014)

    Article  Google Scholar 

  26. Martín-Martín, R., Rodríguez-Aragón, L.J., Torsney, B.: Multiplicative algorithm for computing D-optimum designs for pVT measurements. Chemom. Intell. Lab. Syst. 111, 20–27 (2012)

    Article  Google Scholar 

  27. Matthews, J.N.S., Allcock, G.C.: Optimal designs for Michaelis-Menten kinetic studies. Stat. Med. 23, 477–491 (2004)

    Article  Google Scholar 

  28. Munson-Mcgee, S.H., Mannarswamy, A., Andersen, P.K.: Designing experiments to differentiate between adsorption isotherms using T-optimal designs. J. Food Eng. 101, 386–393 (2010)

    Article  Google Scholar 

  29. Rodríguez-Aragón, L.J., López-Fidalgo, J.: Optimal designs for the Arrhenius equation. Chemom. Intell. Lab. Syst. 77, 131–138 (2005)

    Article  Google Scholar 

  30. Rodríguez-Aragón, L.J., López-Fidalgo, J.: T-, D- and c-optimum designs for BET and GAB adsorption isotherms. Chemom. Intell. Lab. Syst. 89, 36–44 (2007)

    Article  Google Scholar 

  31. Rodríguez-Díaz, J.M., Santos-Martín, M.T.: Study of the best designs for modifications of the Arrhenius equation. Chemom. Intell. Lab. Syst. 95, 199–208 (2009)

    Article  Google Scholar 

  32. Rodríguez-Díaz, J.M., Santos-Martín, M.T., Waldl, H., Stehlík, M.: Filling and D-optimal designs for the correlated generalized exponential models. Chemom. Intell. Lab. Syst. 114, 10–18 (2012)

    Article  Google Scholar 

  33. Schorning, K., Dette, H., Kettelhake, K., Möller, T.: Optimal designs for enzyme inhibition kinetic models. Statistics 52, 1359–1378 (2018)

    Article  MathSciNet  Google Scholar 

  34. Smith, K.: On the standard deviations of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations. Biometrika 12, 1–85 (1918)

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by Ministerio de Economía y Competitividad MTM2016-80539-C2-1-R and by Consejería de Educación, Cultura y Deportes of Junta de Comunidades de Castilla-La Mancha and Fondo Europeo de Desarrollo Regional SBPLY/17/180501/000380.

López-Fidalgo wants to thank Leandro for his support, trust and friendship in some of his professional milestones.

Rodríguez-Aragón wants to thank Professor LJ Rodríguez (Professor of Physical Chemistry at the University of Salamanca) who has always generously answered the questions and shared the applied point of view of the physicochemical models and techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos de la Calle Arroyo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de la Calle Arroyo, C., López-Fidalgo, J., Rodríguez-Aragón, L.J. (2023). Optimal Experimental Design for Physicochemical Models: A Partial Review. In: Balakrishnan, N., Gil, M.Á., Martín, N., Morales, D., Pardo, M.d.C. (eds) Trends in Mathematical, Information and Data Sciences. Studies in Systems, Decision and Control, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-031-04137-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04137-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04136-5

  • Online ISBN: 978-3-031-04137-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics