Skip to main content

How to Get Away with Gradients

  • Chapter
  • First Online:
Microfluidics and Biosensors in Cancer Research

Abstract

Biomolecular gradients are widely present in multiple biological processes. Historically they were reproduced in vitro by using micropipettes, Boyden and Zigmond chambers, or hydrogels. Despite the great utility of these setups in the study of gradient-related problems such as chemotaxis, they face limitations when trying to translate more complex in vivo-like scenarios to in vitro systems. In the last 20 years, the advances in manufacturing of micromechanical systems (MEMS) had opened the possibility of applying this technology to biology (BioMEMS). In particular, microfluidics has proven extremely efficient in setting-up biomolecular gradients which are stable, controllable, reproducible and at length scales that are relevant to cells. In this chapter, we give an overview of different methods to generate molecular gradients using microfluidics, then we discuss the different steps of the pipeline to fabricate a gradient generator microfluidic device, and at the end, we show an application example of the fabrication of a microfluidic device that can be used to generate a surface-bound biomolecular gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pearsall J et al (2012) Oxford dictionaries online. Oxford Univ. Press

    Google Scholar 

  2. Bogenrieder T, Herlyn M (2003) Axis of evil: molecular mechanisms of cancer metastasis. Oncogene 22:6524–6536

    Article  CAS  Google Scholar 

  3. Wang S-J et al (2004) Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Exp Cell Res 300:180–189

    Article  CAS  Google Scholar 

  4. Janeway CA, Travers P, Walport M, Shlomchik MJ (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland

    Google Scholar 

  5. Goodman CS (1996) Mechanisms and molecules that control growth cone guidance. Annu Rev Neurosci 19:341–377

    Article  CAS  Google Scholar 

  6. Stossel TP (1993) On the crawling of animal cells. Science 260:1086–1094

    Article  CAS  Google Scholar 

  7. Redd MJ, Kelly G, Dunn G, Way M, Martin P (2006) Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation. Cell Motil Cytoskeleton 63:415–422

    Article  CAS  Google Scholar 

  8. Chaudhury MK, Whitesides GM (1992) How to make water run uphill. Science 256:1539–1541

    Article  CAS  Google Scholar 

  9. Morgenthaler S, Lee S, Zürcher S, Spencer ND, Zu S, Simple A (2003) Reproducible approach to the preparation of surface-chemical gradients. Langmuir 19:988–989

    Article  Google Scholar 

  10. Jeon NL et al (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316

    Article  CAS  Google Scholar 

  11. Genzer J, Bhat RR (2008) Surface-bound soft matter gradients. Langmuir 24:2294–2317

    Article  CAS  Google Scholar 

  12. Meredith JC, Karim A, Amis EJ (2002) Combinatorial methods for investigations in polymer materials science. MRS 27:330–335

    CAS  Google Scholar 

  13. Grayson ACR et al (2004) A BioMEMS review: MEMS technology for physiologically integrated devices. Proc IEEE 92:6–21

    Article  CAS  Google Scholar 

  14. Trichet L et al (2012) Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc Natl Acad Sci 109:6933–6938

    Article  CAS  Google Scholar 

  15. Lin B, Hui J, Mao H (2021) Nanopore technology and its applications in gene sequencing. Biosensors 11:214

    Article  CAS  Google Scholar 

  16. Heller I, Hoekstra TP, King GA, Peterman EJG, Wuite GJL (2014) Optical tweezers analysis of DNA-protein complexes. Chem Rev 114:3087–3119

    Article  CAS  Google Scholar 

  17. Rigat-Brugarolas LG et al (2014) A functional microengineered model of the human splenon-on-a-chip. Lab Chip 14:1715–1724

    Article  CAS  Google Scholar 

  18. Castillo-Fernandez O, Rodriguez-Trujillo R, Gomila G, Samitier J (2014) High-speed counting and sizing of cells in an impedance flow microcytometer with compact electronic instrumentation. Microfluid Nanofluidics 16:91–99

    Article  Google Scholar 

  19. Holden MA, Kumar S, Castellana ET, Beskok A, Cremer PS (2003) Generating fixed concentration arrays in a microfluidic device. Sensors Actuators B Chem 92:199–207

    Article  CAS  Google Scholar 

  20. Georgescu W et al (2008) Model-controlled hydrodynamic focusing to generate multiple overlapping gradients of surface-immobilized proteins in microfluidic devices. Lab Chip 8:238–244

    Article  CAS  Google Scholar 

  21. Comelles J, Hortigüela V, Samitier J, Martínez E (2012) Versatile gradients of covalently bound proteins on microstructured substrates. Langmuir 28:13688–13697

    Article  CAS  Google Scholar 

  22. Keenan TM, Hsu C-H, Folch A (2006) Microfluidic “jets” for generating steady-state gradients of soluble molecules on open surfaces. Appl Phys Lett 89:114103

    Article  Google Scholar 

  23. Cosson S, Aeberli LG, Brandenberg N, Lutolf MP (2015) Ultra-rapid prototyping of flexible, multi-layered microfluidic devices via razor writing. Lab Chip 15:72–76

    Article  CAS  Google Scholar 

  24. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  CAS  Google Scholar 

  25. Ibidi (2021) μ-Slide chemotaxis

    Google Scholar 

  26. Comelles J, Hortigüela V, Martínez E, Riveline D (2015) Methods for rectifying cell motions in vitro: breaking symmetry using microfabrication and microfluidics. In: Paluch E (ed) Biophysical methods in cell biology. Elsevier Inc., pp 437–452

    Chapter  Google Scholar 

  27. Hollingsworth K (2020) Chips and tips. Solvent extraction of 3D printed molds for soft lithography. Royal Society Chemistry

    Google Scholar 

Download references

Acknowledgments

We thank the Martinez Lab members for their discussions and help. Funding was provided by a European Union Horizon 2020 ERC grant (agreement no. 647863—COMIET), ‘La Caixa’ Foundation (grant no. LCF/PR/HR20/52400011), the CERCA Programme/Generalitat de Catalunya (2017-SGR-1079), and the Spanish Ministry of Economy and Competitiveness (Severo Ochoa Program for Centers of Excellence in R&D 2016-2019). The results presented here only reflect the views of the authors; the European Commission is not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jordi Comelles or Elena Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Comelles, J., Castillo-Fernández, Ó., Martínez, E. (2022). How to Get Away with Gradients. In: Caballero, D., Kundu, S.C., Reis, R.L. (eds) Microfluidics and Biosensors in Cancer Research. Advances in Experimental Medicine and Biology, vol 1379. Springer, Cham. https://doi.org/10.1007/978-3-031-04039-9_2

Download citation

Publish with us

Policies and ethics